Project description:Dengue virus is an + strand RNA virus. We have carried our infections of human cells with Dengue and analyzed the translation, replication, and localization of the Dengue RNA. This allowed for clear definition of the life cycle of the Dengue virus inside a host cell. We also assessed the host response to Dengue virus, finding that a large fraction of the translational response is due to Interferon function. Translational and transcriptional analysis of the cellular response to Dengue virus infection
Project description:Dengue virus is an + strand RNA virus. We have carried our infections of human cells with Dengue and analyzed the translation, replication, and localization of the Dengue RNA. This allowed for clear definition of the life cycle of the Dengue virus inside a host cell. We also assessed the host response to Dengue virus, finding that a large fraction of the translational response is due to Interferon function.
Project description:DNA microarrays and specific RT-PCR assays were used to reveal transcriptional patterns in the blood of children presenting with dengue shock syndrome (DSS) and well-matched patients with uncomplicated dengue. The transcriptome of patients with acute uncomplicated dengue was characterized by a metabolically demanding "host defense" profile; transcripts related to oxidative metabolism, interferon signaling, protein ubiquination, apoptosis and cytokines were prominent. In contrast, the transcriptome of DSS patients was surprisingly benign, particularly with regard to transcripts derived from apoptotic and type I interferon pathways. These data highlight significant heterogeneity in the type or timing of host transcriptional immune responses precipitated by DENV infection independent of the duration of illness. In particular, they suggest that if transcriptional events in the blood compartment contribute to capillary leakage leading to hypovolemic shock, they occur before cardiovascular decompensation occurs, a finding that has implications for rational adjuvant therapy in this syndrome. Whole blood transcriptional profiles of children infected with dengue virus with different clinical outcomes were compared. The subjects including 9 acute dengue shock samples, 9 acute uncomplicated dengue samples, 6 autologous follow up dengue samples and 6 autologous follow up uncomplicated dengue patients. Microarray data was normalised using Genespring GX7 software, statistical analysis was performed in Multiexperiment viewer software. Pathway analysis was performed using Ingenuity Pathway analysis online software.
Project description:Whole blood RNA (PAXgene tubes) was collected from 14 Dengue patients after hospital admission. Additional samples were collected at later time points from 6 of the patients, and single samples were also collected from 4 healthy donors. RNA was amplified using the MessageAmp kit (Ambion), and reverse transcribed. Each sample was labelled with Cy5, and hybridized to a Lymphochip cDNA array along with amplified human reference RNA labelled with Cy3(Universal Human Reference RNA, Stratagene). Analysis was restricted to those array elements (LUIDs) with signal intensity/background of at least 2.5 in either channel for at least 80% (28/34) of the samples, and a regression correlation of 0.6. We characterized gene expression patterns associated with acute dengue infection, and identified a set of transcripts associated with diagnosis of Dengue Shock Syndrome. disease_state_design