Project description:Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, immune responses, and communicating with the environment. Gut microbiota can be affected by some external factors such as foods, temperature, and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops all over the world. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed the S. frugiperda with the antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb the gut microbiota, and further examined the effect of dysbiosis in gut microbiota on the gene expression of S. frugiperda by RNA sequencing. We found the composition and diversity of the gut bacterial community were changed in S. frugiperda after antibiotics treatmen, and the expression of genes related to energy and metabolic process were affected after antibiotics exposure in S. frugiperda. Our work will help understand the role of gut microbiota in insects.
Project description:Gut microbiota has profound effects on obesity and associated metabolic disorders. Targeting and shaping the gut microbiota via dietary intervention using probiotics, prebiotics and synbiotics can be effective in obesity management. Despite the well-known association between gut microbiota and obesity, the microbial alternations by synbiotics intervention, especially at the functional level, are still not characterized. In this study, we investigated the effects of synbiotics on high fat diet (HFD)-induced metabolic disorders, and systematically profiled the microbial profile at both the phylogenetic and functional levels. Synbiotics significantly reversed the HFD-induced change of microbial populations at the levels of richness, taxa and OTUs. Potentially important species Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of synbiotics were identified. At the functional level, short chain fatty acid and bile acid profiles revealed that interventions significantly restored cecal levels of acetate, propionate, and butyrate, and synbiotics reduced the elevated total bile acid level. Metaproteomics revealed the effect of synbiotics might be mediated through pathways involved in carbohydrate, amino acid, and energy metabolisms, replication and repair, etc. These results suggested that dietary intervention using our novel synbiotics alleviated HFD-induced weight gain and restored microbial ecosystem homeostasis phylogenetically and functionally.
2022-02-22 | PXD009564 | Pride
Project description:Longitudinal alternations of gut microbiota in NAFLD
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via infection with the pathogenic bacterial species enterotoxigenic Bacteroides fragilis (ETBF) and implanted particulate material (mean particle size <600 μm) of the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation, increased levels of neutrophils in lymphoid tissues, and altered skeletal muscle gene expression. At the PCL implant site, we found significant changes in the transcriptome of sorted stromal cells between infected and control mice, including differences related to ECM components such as proteoglycans and glycosaminoglycans. However, we did not observe ETBF-induced differences in fibrosis levels. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant.
Project description:Study whether IL-33 participates in the cholangiopathies during C. sinensis infection,and whether the gut microbiota participates in the pathogenesis of clonorchiasis
Project description:Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms. Among these responses, temporary anorexia associated with an infection is often beneficial. It poses, however, a problem for the trillions of microbes residing in the gastrointestinal tract, as they also experience reduced substrate availability. We hypothesized that under anorectic conditions caused by infection, the host might activate protective mechanisms to support the gut microbiota during the acute phase of the disease. Here, we report that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α1,2-fucosylation of the small intestine epithelial cells (IEC). The process requires sensing of TLR agonists and production of IL-23 by dendritic cells, activation of innate lymphoid cells and expression of α1,2-Fucosyltransferase-2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is utilized by microbiota, as shown using reporter bacteria and by transcriptional profiling of the gut microbiome. Fucosylation also reduces the expression of bacterial virulence genes within the commensal gut microbiome and improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host’s resources to maintain host-microbial interactions during pathogen-induced stress. RNA-Seq analysis of the murine gut microbiome following LPS exposure. Fut2-/- (B6.129X1-Fut2tm1Sdo/J) mice were backcrossed greater than 7 generations to BALB/c. Fut2-/- (KO) and Fut2+/- (Het) animals were analyzed.
Project description:Among the diverse forms of symbioses, facultative nutritional mutualism forged by the host and its resident gut microbiota permits the symbiont to adapt to the changing nutritional environment during the host’s life time. The horizontally acquired gut bacteria in Drosophila are a perfect example of nutritional mutualists. Here, we study the Lactobacillus plantarum (Lp WJL) infection effect in the Drosophila Genetic Reference Panel (DGRP) collection in context of larvae raised in chronic undernutrtion.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.