Project description:This SuperSeries is composed of the following subset Series: GSE22915: Mussel (Mytilus galloprovincialis) digestive gland tissue: gene expression profiles across an annual cycle GSE23049: Mytilus galloprovincialis: development of female gonads GSE23050: Mytilus galloprovincialis: development of male gonads GSE23051: Mytilus galloprovincialis: differences between male and female gene expression patterns in gonads (mantle tissue) Refer to individual Series
Project description:Direct comparison of the transcriptional patterns between male and female in the digestive gland of a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -February March 2008 (four stages, winter peak). Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the Digestive gland (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of male gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of female gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:[original Title] Transcriptomic responses to heat-stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. Invasive species are increasingly prevalent in marine ecosystems worldwide. Although many studies have examined the ecological effects of invasives, little is known about physiological mechanisms that might contribute to invasive success. The mussel Mytilus galloprovincialis, a native of the Mediterranean Sea, is a successful invader on the central and southern coasts of California, where it has largely displaced the native congener, Mytilus trossulus. It has been previously shown that thermal responses of several physiological traits may underlie the capacity of M. galloprovincialis to out-compete M. trossulus in warm habitats. To elucidate possible differences in stress-induced gene expression between these congeners, we developed an oligonucleotide microarray with 8,874 probes representing 4,488 different genes that recognized mRNAs of both species. In acute heat-stress experiments, 1,531 of these genes showed temperature-dependent changes in gene expression that were highly similar in the two congeners. In contrast, 96 genes showed species-specific responses to heat-stress, functionally characterized by their involvement in oxidative stress, proteolysis, energy metabolism, ion transport, cell signaling, and cytoskeletal reorganization. The gene that showed the biggest difference between the species was the gene for the molecular chaperone small heat shock protein 24, which was highly induced in M. galloprovincialis and showed only a small change in M. trossulus. These different responses to acute heat-stress may help to explain—and predict—the invasive success of M. galloprovincialis in a warming world.
Project description:Transcriptional profiling of natural population of mussels (Mytilus galloprovincialis) -digestive gland tissue- comparing female individuals sampled in the Bizerta Lagoon, Tunisia, across May 2007 - April 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of female gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Mantle tissue from individual animals in different gonad maturation stages were analyzed in a complete loop design. Dual color competitive hybridizations (stage 4 vs stage 1, 2 vs 1, 3 vs 2, 4 vs 3) including label swap. Single individuals. Four biological replicates. One replicate per array.
Project description:Direct comparison of the transcriptional patterns between male and female in the digestive gland of a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -February March 2008 (four stages, winter peak). Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the Digestive gland (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Test/reference design (female/male). Direct comparison of RNA extracts obtained from the Digestive gland tissue of female and male animals. Two (male, female) x four conditions (gonad developmental stage 1, stage 2, stage 3, stage 4). Dual color competitive hybridizations with label swap. Single individuals. Four biological replicates. One replicate per array.
Project description:Transcriptional profiling of the mantle tissue across the four stages of male gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the M-bM-^@M-^\hotM-bM-^@M-^] months (MayM-bM-^@M-^SAugust) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Mantle tissue from individual animals in different gonad maturation stages were analyzed in a complete loop design. Dual color competitive hybridizations (stage 4 vs stage 1, 2 vs 1, 3 vs 2, 4 vs 3) including label swap. Single individuals. Four biological replicates. One replicate per array.