Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:We study the genomic and developmental basis of the mammalian gliding membrane, or patagium, an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of fifteen new marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. We confirm our finding via epigenomics, transcriptomics, and in vivo marsupial transgenics.
Project description:The intestine is a site of diverse functions including digestion, nutrient absorption, immune surveillance, and microbial symbiosis. As such, intestinal homeostasis is vital for overall wellbeing. Faecal microRNAs (miRNAs) offer valuable non-invasive insights into the transcriptional state of the intestine. However, typical faecal miRNA yields and profiles remain incompletely characterised. Here, we develop an optimised protocol for faecal miRNA detection, and describe a reproducible murine faecal miRNA profile across several studies by performing a meta-analysis. By examining faecal miRNA changes during chronic infection with the gastrointestinal helminth, Trichuris muris, we identify the altered expression of miRNAs associated with fibrosis, barrier integrity and wound healing. Fibrosis was confirmed in vivo, suggesting a role for these miRNAs in regulating wound healing during chronic infection where the production of classical wound healing Th2 cytokines are low. Further implementations of this technique can identify novel hypotheses and therapeutic strategies in diverse disease contexts.
Project description:RNA was extracted from the meninges of mice from either Specific pathogen free or Germ free facilities or from the offspring of mice reconstituted with different human microbiomes.