Project description:We seek to determine the effects of foliar endophytes on soybean physiological traits, and their effect on plant responses to elevated carbon dioxide. We are using three dominant endophytes extracted from the SoyFACE facility at UIUC.
Project description:The meristem-associated endosymbiont M. extorquens DSM13060 significantly increases needle and root growth of Scots pine (Pinus sylvestris L.) seedlings without producing plant hormones, but by aggregating around host nuclei. Here we studied gene expression of the pine host induced by M. extorquens DSM13060 infection. We selected the time point of 90 days post-inoculation for our analysis based, because at this point, Methylorubrum extorquens DSM13060 has systemically colonized the pine seedlings, being found throughout tissues of roots and shoots.
Project description:To identify specific gene networks induced in host roots by C. geophilum, we inoculated seedlings of Scots pine simultaneously with C. geophilum and either Suillus granulatus or Rhizopogon roseolus, two common ECM fungi associated to pines. We then measured the differential expression of Scots pine genes in the respective mycorrhizas using oligoarrays.
Project description:To identify specific gene networks induced in host roots by C. geophilum, we inoculated seedlings of Scots pine simultaneously with C. geophilum and either Suillus granulatus or Rhizopogon roseolus, two common ECM fungi associated to pines. We then measured the differential expression of Scots pine genes in the respective mycorrhizas using oligoarrays. We performed 14 hybridizations (NimbleGen) with samples derived from Pinus sylvestris mycorrhiza with Cenococcum geophilum, Rhizopogon roseolus or Suillus granulatus (3 biological replicates each), as well as from non-mycorrhizal control roots (two replicates). Only the Pinus-derived sequences from the array were considered for this analysis. All samples were labeled with Cy3.
Project description:Pine wilt disease is a worldwide dangerous pine disease. We used Masson pine (Pinus massoniana) clones, selected through traditional breeding and testing for 20 years, with high resistance to study the molecular mechanism of resistance to pine wood nematode (PWN, Bursaphelenchus xylophilus). A total of 3491 proteins were identified from seedling tissue, among which 2783 proteins contained quantitative information. Total 42 proteins were up-regulated and 96 proteins were down-regulated in resistant lines. Of them, function enrichment analysis found that significant differences in proteins with pectin esterase activity or peroxidase activity. Proteins participating in salicylic acid metabolism, antioxidant stress reaction, polysaccharide degradation, glucose acid ester sheath lipid biosynthesis, sugar glycosaminoglycans degradation pathway also changed significantly. PRM results showed that pectin acetyl esterase, carbonic anhydrase, peroxidase and chitinase were significantly down-regulated, while aspartic protease was significantly up-regulated, which was consistent with proteomic data.These results suggested that Masson pine could degrade nematode-related proteins by increasing protease to inhibit their infestation, and enhance the resistance of Masson pine to PWN by down-regulating the carbon metabolism to limit available carbon to PWN or to be involved in cell wall components or tissue softening. Most downregulated proteins seem to take back seats prior to pathogen attacks. The highly resistant Masson pine, very likely, has evolved multiple pathways, both the passive and active, to defense against PWN infestation.
Project description:Bursaphelenchus xylophilus is known as the causative agent of pine wilt disease with complex life cycles. In this research, newly published Bursaphelenchus xylophilus genome data were employed to annotate its miRNAs based on deep sequencing technologies. Four small RNA libraries derived from different infection stages of pine wilt disease were constructed and sequenced. Consequently, we obtained hundreds of evolutionarily conserved miRNAs as well as novel miRNA candidates. The analysis of miRNA expression patterns showed that most miRNAs were expressed at extraordinarily high levels during the middle stage of pine wilt disease. Subsequent stem-loop RT-PCR experiments were carried out to validate our results. Functional analysis proved that expression levels of miR-73 and miR-239 were mutually exclusive with their target GH45 cellulase genes., genes known to be responsible for the degradation of the pine cell walls. In addition, another set of atypical miRNAs, termed mirtrons, were identified from B. xylophilus introns. This discovery has expanded the current knowledgebase of such splicing-derived miRNAs into B. xylophilus. Thus, our research has provided detailed characterization of B. xylophilus miRNAs expression patterns during the pathological process of pine wilt disease. The findings will contribute to more in-depth understanding of this devastating plant disease. For the purposes of this study, we classified the pathogenic process associated with PWD into three stages in order to best characterize the expression patterns of microRNAs during the development of this devastating disease. The following describes the first stage (F): about seven days after pine trees are infected with PWNs, the tips of the pine needles begin to turn brown. Next, the middle stage (M) ensues approximately seven days later, when half of the needles on pine trees turn brown. The last stage (L) occurs another 10 days later and pine needles are complete browning. PWNs cultured on Botrytis cinerea grown on PDA medium served as the control stage (C).
Project description:Bursaphelenchus xylophilus is known as the causative agent of pine wilt disease with complex life cycles. In this research, newly published Bursaphelenchus xylophilus genome data were employed to annotate its miRNAs based on deep sequencing technologies. Four small RNA libraries derived from different infection stages of pine wilt disease were constructed and sequenced. Consequently, we obtained hundreds of evolutionarily conserved miRNAs as well as novel miRNA candidates. The analysis of miRNA expression patterns showed that most miRNAs were expressed at extraordinarily high levels during the middle stage of pine wilt disease. Subsequent stem-loop RT-PCR experiments were carried out to validate our results. Functional analysis proved that expression levels of miR-73 and miR-239 were mutually exclusive with their target GH45 cellulase genes., genes known to be responsible for the degradation of the pine cell walls. In addition, another set of atypical miRNAs, termed mirtrons, were identified from B. xylophilus introns. This discovery has expanded the current knowledgebase of such splicing-derived miRNAs into B. xylophilus. Thus, our research has provided detailed characterization of B. xylophilus miRNAs expression patterns during the pathological process of pine wilt disease. The findings will contribute to more in-depth understanding of this devastating plant disease.
Project description:In this study, a newly developed 8x15K Fusarium graminearum Agilent microarray was applied to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles from treated versus untreated fungal liquid cultures uncovered 1058 genes that were significantly differentially expressed. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the most significantly responding category, providing statistical confirmation of the mode-of-action of azole fungicides. Transcriptional profiling of 54 genes, which encode ABC transporters in F. graminearum, suggested that several of these might be involved in reducing intracellular fungicide concentration. In addition, several genes encoding transcription factors with similarity to yeast genes known to co-ordinate fungicide responses exhibited significant differential expression.