Project description:Cultivated carrot (Daucus carota L. ssp. sativus) was domesticated from wild carrot (Daucus carota L. ssp. carota) with radical different traits. The aim of this study was to compare the root transcriptomes between cultivated and wild carrots for SNP discovery, inferring domestication process, and identifying domestication genes. Six cultivated carrots representing main European carrot root types and five wild carrot populations from widely dispersed sites were used. The root transcriptomes were sequenced with multiplexing paried-end sequencing in Illumina Genome Analyzer IIx.
Project description:Wild species of crops serve as a valuable germplasm resource for breeding of modern cultivars. Rice (Oryza sativa L.) is a vital global staple food. However, research on genome evolution and diversity of wild rice species remains limited. Here, we present nearly complete genomes of 13 representative wild rice species. By integrating with four previously published genomes for pangenome analysis, a total of 101,723 gene families are identified across the genus, including 9834 (9.67%) core gene families. Additionally, 63,881 gene families absent in cultivated rice species but present in wild rice species are discovered. Extensive structural rearrangements, sub-genomes exchanges, widespread allelic variations, and regulatory sequence variations are observed in wild rice species. Interestingly, expanded but less diverse disease resistance genes in the genomes of cultivated rice, likely due to the loss of some resistance genes and the fixing and amplification of genes encoding resistance genes to specific diseases during domestication and artificial selection. This study not only reveals natural variations valuable for gene-level studies and breeding selection but also enhances our understanding on rice evolution and domestication.
Project description:Purpose and methods:Transcriptome profiling of Phytophthora sojae P6497 mycelium (3-days old) and Phytophthora infestans T30-4 mycelium (6-days old) were generated to find out the relationship between 6mA methylation and gene expression. RNA-seq data was mapped using Tophat2, and gene expression data was generated by Cufflinks. Transcriptome profiling of P. sojae psdamt3 mutant T9 (lost 374bp by CRISPR/Cas9) was generated to check the differential expressed genes (DEGs) between the mutant and wild-type P. sojae P6497. Read counts was calculated using featureCounts, and DEGs was calculated using DEseq2 with |log2FC|≥1, y-axis is FDR<0.05. Conclusions: 6mA is associated with lowly expressed genes. Examination of differentially expressed genes (DEGs) in psdamt3 uncovers a total of 3156 genes, with 1544 genes up-regulated and 1622 genes down-regulated.
Project description:Interspecific genomic variation can provide a genetic basis for local adaptation and domestication. A series of studies have presented its role of interspecific haplotypes and introgressions in adaptive traits, but few studies have addressed their role in improving agronomic character. Two allotetraploid Gossypium species, Gossypium barbadense (Gb) and G. hirsutum (Gh) originating from the Americas, are cultivated independently. Here, through sequencing and the comparison of one GWAS panel in 229 Gb accessions and two GWAS panels in 491 Gh accessions, we found that most associated loci or functional haplotypes for agronomic traits were highly divergent, representing the strong divergent improvement between Gb and Gh. Using a comprehensive interspecific haplotype map, we revealed that six interspecific introgressions from Gh to Gb were significantly associated with the phenotypic performance of Gb, which could explain 5%-40% of phenotypic variation in yield and fibre qualities. In addition, three introgressions overlapped with six associated loci in Gb, indicating that these introgression regions were under further selection and stabilized during improvement. A single interspecific introgression often possessed yield-increasing potential but decreased fibre qualities, or the opposite, making it difficult to simultaneously improve yield and fibre qualities. Our study not only has proved the importance of interspecific functional haplotypes or introgressions in the divergent improvement of Gb and Gh, but also supports their potential value in further human-mediated hybridization or precision breeding.
Project description:Cultivated jute, which comprises the two species Corchorus capsularis and C. olitorius, is the second most important natural fibre source after cotton. Here we describe chromosome-level assemblies of the genomes of both cultivated species. The C. capsularis and C. olitorius assemblies are each comprised of seven pseudo-chromosomes, with the C. capsularis assembly consisting of 336 Mb with 25,874 genes and the C. olitorius assembly containing 361 Mb with 28 479 genes. Although the two Corchorus genomes exhibit collinearity, the genome of C. olitorius contains 25 Mb of additional sequences than that of C. capsularis with 13 putative inversions, which might give a hint to the difference of phenotypic variants between the two cultivated jute species. Analysis of gene expression in isolated fibre tissues reveals candidate genes involved in fibre development. Our analysis of the population structures of 242 cultivars from C. capsularis and 57 cultivars from C. olitorius by whole-genome resequencing resulted in post-domestication bottlenecks occurred ~2000 years ago in these species. We identified hundreds of putative significant marker-trait associations (MTAs) controlling fibre fineness, cellulose content and lignin content of fibre by integrating data from genome-wide association studies (GWAS) with data from analyses of selective sweeps due to natural and artificial selection in these two jute species. Among them, we further validated that CcCOBRA1 and CcC4H1 regulate fibre quality in transgenic plants via improving the biosynthesis of the secondary cell wall. Our results yielded important new resources for functional genomics research and genetic improvement in jute and allied fibre crops.
Project description:BackgroundMagnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae.ResultsIn this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively.ConclusionsThe response mechanisms to M. oryzae were more complex in wild rice than what was observed in cultivated rice. Therefore, this study may have practical implications for controlling M. oryzae in rice plantings and will provide useful information for incorporating and assessing disease resistance to M. oryzae in rice breeding programs.
Project description:Two subspecies of rice, Oryza sativa ssp. indica and O. sativa ssp. japonica, with reproductive isolation and differences in morphology and phenotypic differences, were established during the process of rice domestication. To understand how domestication has changed the transcriptomes of the two rice subspecies and given rise to the phenotypic differences, we obtained approximately 700 Gb RNA-Seq data from 26 indica and 25 japonica accessions, and identified 97,005 transcribed fragments and 4579 novel transcriptionally active regions. The two rice subspecies had significantly different gene expression profiles, we identified 1,357 (3.3% in all genes) differentially expressed genes (DEGs) between indica and japonica rice. Combining existing gene function studies, it is found that some of these differential genes are related to the differentiation of the two subspecies, such as grain shape and cold tolerance, etc. Functional annotation of these DEGs indicates that they are involved in cell wall biosynthesis and reproductive processes. Furthermore, compared with the non-DEGs, the DEGs from both subspecies had more 5'flanking regions with low polymorphism to divergence ratios, indicating a stronger positive selection pressure on the regulation of the DEGs. This study improves our understanding of the rice genome by comparatively analyzing the transcriptomes of indica and japonica rice and identifies DEGs those may be responsible for the reproductive isolation and phenotypic differences between the two rice subspecies.
Project description:Transcriptional programs are important for the development of complex eukaryotic organisms. Suites of genes expressed with temporal and spatial controls by regulatory networks in response to environmental cues are the cornerstone for achieving the specification of morphology and physiology of the tissue or organ systems. Thus, an important issue of developmental biology is to define the subsets of expressed genes and their expression patterns that are related to the organ or tissue system. Rice is a model plant for cereal genome research. Although large amounts of data of whole genome expression have been generated in recent years in rice, the majority of the studies were designed to identify differentially expressed genes between controls and treatments with certain experimental conditions such as biotic, abiotic or light, or to investigate the comparative expression patterns between wild type and mutants of certain genes. Only in a few cases were the datasets designed for studying the transcriptomes of a limited number of organs and cell types. Thus, there is still insufficiency in the available datasets that would allow for the establishment of expression patterns for suits of genes during the developmental processes of rice. In this study, we collected 39 tissues/organs covering the life cycle of the rice from two indica varieties Minghui 63 and Zhenshan 97, and the Affymetrix GeneChip Rice Genome Array was used to investigate the transcriptomes of these organs. The objective was to develop a genomic resource of genome-wide dynamic transcriptome of the rice plant, which could be used as the reference gene expression map for rice and other cereals. Also, the dataset is used to identify the candidates of genes with potential functions in regulating the development of rice or breeding practice. Keywords: rice, expression profiling, life cycle, development, inflorescence To dissect the developmental transcriptomes of rice, a total of 39 tissues covering the entire tissue culture process and life cycle were sampled from two indica varieties Minghui 63 and Zhenshan 97. And the Affymetrix Genechip rice Genome Array was used to investigate their dynamic transcriptomes. Two independent biological replicates were sampled from most tissues, except two seedling and three panicle tissues, for which three independent biological replicates each with two technical replicates were sampled, resulting in a dataset of 190 microarrays.