Project description:Knockout mutants of polyketide synthase genes were generated (pks1, pks2, pks3, pks14, pks18, pks37) and compared to wild-type AX2 strain of Dictyostelium discoideum using Agilent custom microarrays. The Dictyostelium cells were harvested at eight developmental stages (Amoeboid, Intiation of starvation, loose aggregate, Streaming, Mound, Slug, early culminant, Fruiting body) and subjected to microarray based expression profiling.
Project description:Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.
Project description:We report here that duplications of 15 kb or more are common in the genome of the social amoeba Dictyostelium discoideum. Most of the axenic "workhorse" strains Ax2 and Ax3/4 obtained from different laboratories can be expected to carry new duplications. The auxotrophic strains DH1 and JH10 also bear previously unreported duplications. Strain Ax3/4 is known to carry a large duplication on chromosome 2 and the domain boundary of this structure shows evidence of further instability; we find a further variable duplication on chromosome 5. These duplications are lacking in Ax2, which has instead a small duplication on chromosome 1. Stocks of the type isolate NC4 are similarly variable, though we have identified some approximating the assumed ancestral genotype. More recent wild-type isolates are almost without duplications, but we can identify small deletions or regions of high divergence, possibly reflecting responses to local selective pressures. Duplications are scattered through most of the genome, and can be stable enough to reconstruct genealogies spanning decades of the history of the NC4 lineage. The expression level of many duplicated genes is increased with dosage, but for others it appears that some form of dosage compensation occurs.
Project description:Iterative polyketide synthases (PKSs) are large, multifunctional enzymes that resemble eukaryotic fatty acid synthases but can make highly functionalized secondary metabolites using complex and unresolved programming rules. During biosynthesis of the kinase inhibitor hypothemycin by Hypomyces subiculosus , a highly reducing iterative PKS, Hpm8, cooperates with a nonreducing iterative PKS, Hpm3, to construct the advanced intermediate dehydrozearalenol (DHZ). The identity of putative intermediates in the formation of the highly reduced hexaketide portion of DHZ were confirmed by incorporation of (13)C-labeled N-acetylcysteamine (SNAC) thioesters using the purified enzymes. The results show that Hpm8 can accept SNAC thioesters of intermediates that are ready for transfer from its acyl carrier protein domain to its ketosynthase domain and assemble them into DHZ in cooperation with Hpm3. Addition of certain structurally modified analogues of intermediates to Hpm8 and Hpm3 can produce DHZ derivatives.
Project description:Polyketide synthases (PKSs) are molecular assembly lines that condense basic chemical building blocks for the production of structurally diverse polyketides. Many PKS biosynthetic gene clusters contain a gene encoding for a type II thioesterase (TEII). It is believed that TEIIs exert a proofreading function and restore or increase the productivity of PKSs by removing aberrant modifications on the acyl-carrier proteins (ACPs) of the PKS assembly line. Yet biochemical evidence is still sparse. Here, we investigated the function of PnG, the TEII of the phoslactomycin PKS (Pn PKS), in the context of its cognate assembly line in vitro. Biochemical analysis revealed that PnG preferentially hydrolyzes alkyl-ACPs over (alkyl)malonyl-ACPs by up to three orders of magnitude, supporting a proofreading role of the enzyme. We further demonstrate that PnG increases the in vitro production of different native and non-native tetra-, penta-, and hexaketide derivatives of phoslactomycin by more than one order of magnitude and show that these effects are caused by the initial clearing of the Pn PKS, as well as proofreading of the active assembly line. Finally, we demonstrate that PnG is able to release intermediate but notably also terminal polyketides from the Pn PKS. This allows PnG to functionally replace and overcome the terminal TEI activity of chimeric in vitro Pn PKS systems, as showcased with a phoslactomycin hexaketide system. Altogether, our experiments provide detailed insights into the molecular mechanisms and the multiple functions of PnG in its native context, as well as their potential use in future applications.
Project description:The product template (PT) domains, specifically in fungal non-reducing polyketide synthases (NR-PKSs), mediate the regioselective cyclization of polyketides dominating the final structures. However, up to date, the systematic knowledge about PT domains has been insufficient. In present study, the relationships between sequences, structures and functions of the PT domains were analyzed with 661 NR-PKS sequences. Based on the phylogenetic analysis, the PT domains were classified into prominent eight groups (I-VIII) corresponding with the representative compounds and cyclization regioselectivity (C2-C7, C4-C9, and C6-C11). Most of the cavity lining residue (CLR) sites in all groups were common, while the regional CLR site mutations resulted in the appearance of finger-like regions with different orientation. The cavity volumes and shapes, even the catalytic dyad positions of PT domains in different groups were corresponding with characteristic cyclization regioselectivity and compound sizes. The conservative residues in PT sequences were responsible for the cyclization functions and the evolution of the key residues resulted in the differentiations of cyclization functions. The above findings may help to better understand the cyclization mechanisms of PT domains and even predict the structural types of the aromatic polyketide products.
Project description:Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products known.
Project description:Enzymatic core components from trans-acyltransferase polyketide synthases (trans-AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans-AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N-acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)-tethered intermediates, we show that the enzyme inserts oxygen into β-ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non-hydrolyzed oocydin congener with retained ester moiety, we propose a unified biosynthetic pathway of oocydins, haterumalides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.