Project description:The shift from a hunter-gatherer (HG) to an agricultural (AG) mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture impacted the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells (PBMCs) to bacterial and viral stimuli between the Batwa, a rainforest hunter-gatherer, and the Bakiga, an agriculturalist population from Central Africa. We observed increased divergence between hunter-gatherers and farmers in the transcriptional response to viruses compared to that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control, and we show that positive natural selection has helped to shape population differences in immune regulation. Unexpectedly, we found stronger signatures of recent natural selection in the rainforest hunter-gatherers, which argues against the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.
Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.
Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts. Copy number differences between NA18507 and KB1 were predicted from the depth of whole-genome shotgun sequence reads. These predictions were then validated using array-CGH using a a genome-wide design as well as a custom design targeted at specific regions of copy number difference
Project description:To investigate the factors affecting the composition of the oral microbiome of Agta hunter-gatherers from the Philippines, we sequenced the 16S rRNA region from saliva samples from the Agta population (hunter-gatherers from Philippines) together with BaYaka (hunter-gatherers from Congo) and Palanan farmers (neighboring population of the Agta).
Project description:To investigate the relationship between host genetics and the oral microbiome composition of Agta hunter-gatherers from the Philippines, we genotyped the Agta population (hunter-gatherers from Philippines) together with BaYaka (hunter-gatherers from Congo) and Palanan farmers (neighbouring population of the Agta).
Project description:Recent improvements in the analysis ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and past genetic diversity of our species. Here we present a “multi-omics” study, integrating genomic and proteomic analyses of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified “Villabruna cluster”. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analyses of dental calculus using genomics and proteomics showed a similar oral microbiome composition as Neandertals, but distinct from later foragers and farmers, revealing also a diet based on mammals, fish and plants. Our results demonstrate the power of using a multi-omics approach in the study of prehistoric human populations.
Project description:The distribution of deleterious genetic variation across human populations is a key issue in evolutionary biology and medical genetics. However, the impact of different modes of subsistence on recent changes in population size, patterns of gene flow, and deleterious mutational load remains unclear. Here, we report high-coverage exomes from various populations of rainforest hunter-gatherers and farmers from central Africa. We find that the recent demographic histories of hunter-gatherers and farmers differed considerably, with population collapses for hunter-gatherers and expansions for farmers, accompanied by increased gene flow. We show that purifying selection against newly arising deleterious alleles is of similar efficiency across African populations, in contrast with Europeans where we detect weaker purifying selection. Furthermore, the per-individual mutation load of rainforest hunter-gatherers is similar to that of farmers, under both additive and recessive models. Our results indicate that differences in the cultural practices and demographic regimes of African populations have not resulted in large differences in mutational burden, and highlight the beneficial role of gene flow in reshaping the distribution of deleterious genetic variation across human populations.
Project description:To investigate how human populations have adapted to the equatorial rainforest, we generated 266 high-coverage exomes, analyzed in combination with 300 published exomes, from 14 populations of African rainforest hunter-gatherers and farmers, together with 40 newly-generated, low-coverage genomes. Genome scans for positive selection and signatures of polygenic selection provide evidence for local adaptation of hunter-gatherers to the African rainforest.