Project description:Maternal obesity programs the offspring to cardiovascular disease, insulin resistance, and obesity. We sequenced and profiled the cardiac miRNAs that were dysregulated in the hearts of baboon fetuses born to a high fat / high fructose diet fed mothers compared to a regular diet fed mothers.
Project description:Whole genome expression profilling were undertaken in high fat diet (HFD)-fed obese rats to identify the genetic factors associated with metabolic dysfunction, insulin resistance and obesity.
Project description:Maternal obesity programs the offspring to cardiovascular disease, insulin resistance, and obesity. We sequenced and profiled the cardiac miRNAs that were dysregulated in the hearts of baboon fetuses born to a high fat / high fructose diet fed mothers compared to a regular diet fed mothers. Fetal hearts were collected from baboon fetuses born to obese and lean mothers, total RNA was isolated, and fetal cardiac miRNA were sequenced and profiled
Project description:Obesity and insulin resistance are associated with oxidative stress, which may be implicated in their progression. The kinase JNK1 emerged as a promising drug target for the treatment of obesity and type-2 diabetes. However, JNK1 is a key mediator of the oxidative stress response, promoting either cell dead or survival depending on magnitude and context of its activation. Furthermore, JNK inactivation shortens lifespan in drosophila and c. elegans. To learn on the safety and efficacy of long-term JNK inhibition in vertebrates, we investigated mice lacking JNK1 (JNK1-/-) exposed over a long period to an obesogenic high-fat diet (HFD). JNK1-/- mice chronically fed an HFD developed more skin oxidative damage because of reduced catalase expression, but also showed sustained protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, paralleled by decreased oxidative damage in fat and liver. We conclude that JNK1 is a relatively safe drug target for obesity-related diseases. RNA was collected from liver, skin and epididymal fat tissues from JNK1 KO mice and WT mice fed in high fat diet. Each condition was run in quadruplicate
Project description:Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C epsilon (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high fat diet-induced hepatic insulin resistance. Here we employ a systems level approach to uncover additional signaling pathways involved in high fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high fat-fed, and high fat-fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation.
Project description:In the present study, we used C57BL/6J mouse, as a model for studying diet-induced diabetes and obesity, since this strain accumulates adipose tissue mass, insulin resistance, hyper-insulinemia, and hyper-lipidemia similar to humans fed on an high-fat high-sugar diet (HFHSD).
Project description:In the present study, we used C57BL/6J mouse, as a model for studying diet-induced diabetes and obesity, since this strain accumulates adipose tissue mass, insulin resistance, hyper-insulinemia, and hyper-lipidemia similar to humans fed on an high-fat high-sugar diet (HFHSD).
Project description:In the present study, we used C57BL/6J mouse, as a model for studying diet-induced diabetes and obesity, since this strain accumulates adipose tissue mass, insulin resistance, hyper-insulinemia, and hyper-lipidemia similar to humans fed on an high-fat high-sugar diet (HFHSD).