Project description:In Japan, wasabi (Eutrema japonicum) is an important traditional condiment, and is recognized as an endemic species. In the present study, we generated a chromosome-level and haplotype-resolved reference genome for E. japonicum using PacBio CLR (continuous long reads), Illumina, and Hi-C sequencing data. The genome consists of 28 chromosomes that contain 1,512.1 Mb of sequence data, with a scaffold N50 length of 55.67 Mb. We also reported the subgenome and haplotype assignment of the 28 chromosomes by read-mapping and phylogenic analysis. Three validation methods (Benchmarking Universal Single-Copy Orthologs, Merqury, and Inspector) indicated that our obtained genome sequences were a high-quality and high-completeness genome assembly. Comparison of genome assemblies from previously published genomes showed that our obtained genome was of higher quality. Therefore, our genome will serve as a valuable genetic resource for both chemical ecology and evolution research of the genera Eutrema and Brassicaceae, as well as for wasabi breeding.
Project description:Microcos paniculata is a shrub used traditionally as folk medicine and to make herbal teas. Previous research into this species has mainly focused on its chemical composition and medicinal value. However, the lack of a reference genome limits the study of the molecular mechanisms of active compounds in this species. Here, we assembled a haplotype-resolved chromosome-level genome of M. paniculata based on PacBio HiFi and Hi-C data. The assembly contains two haploid genomes with sizes 399.43 Mb and 393.10 Mb, with contig N50 lengths of 43.44 Mb and 30.17 Mb, respectively. About 99.93% of the assembled sequences could be anchored to 18 pseudo-chromosomes. Additionally, a total of 482 Mb repeat sequences were identified, accounting for 60.76% of the genome. A total of 49,439 protein-coding genes were identified, of which 48,979 (99%) were functionally annotated. This haplotype-resolved chromosome-level assembly and annotation of M. paniculata will serve as a valuable resource for investigating the biosynthesis and genetic basis of active compounds in this species, as well as advancing evolutionary phylogenomic studies in Malvales.
Project description:Understanding the intricate regulatory mechanisms underlying the anthocyanin content (AC) in fruits and vegetables is crucial for advanced biotechnological customization. In this study, we generated high-quality haplotype-resolved genome assemblies for two mulberry cultivars: the high-AC 'Zhongsang5801' (ZS5801) and the low-AC 'Zhenzhubai' (ZZB). Additionally, we conducted a comprehensive analysis of genes associated with AC production. Through genome-wide association studies (GWAS) on 112 mulberry fruits, we identified MaVHAG3, which encodes a vacuolar-type H+-ATPase G3 subunit, as a key gene linked to purple pigmentation. To gain deeper insights into the genetic and molecular processes underlying high AC, we compared the genomes of ZS5801 and ZZB, along with fruit transcriptome data across five developmental stages, and quantified the accumulation of metabolic substances. Compared to ZZB, ZS5801 exhibited significantly more differentially expressed genes (DEGs) related to anthocyanin metabolism and higher levels of anthocyanins and flavonoids. Comparative analyses revealed expansions and contractions in the flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) genes, resulting in altered carbon flow. Co-expression analysis demonstrated that ZS5801 displayed more significant alterations in genes involved in late-stage AC regulation compared to ZZB, particularly during the phase stage. In summary, our findings provide valuable insights into the regulation of mulberry fruit AC, offering genetic resources to enhance cultivars with higher AC traits.
Project description:Cuphea hookeriana Walp. is an ornamental plant belonging to the Lythraceae. In this study, we reported the complete chloroplast (cp) genome sequence here and analyzed the phylogenetic relationship among Lythraceae plants. The length of the cp genome was 158,999 bp, including a large single-copy (LSC, 89,311 bp) region and a small single-copy (SSC, 18,436 bp) region separated by a pair of inverted repeats (IRs, 25,626 bp). There were 72 unique protein-coding genes (PCGs), 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes in the cp genome of C. hookeriana. A total of 223 simple sequence repeats (SSRs) and 34 long repeat sequences were identified. Phylogenetic analyses using maximum-likelihood (ML) revealed that C. hookeriana was close to C. hyssopifolia. In addition, the two Cuphea species were the sister group of Woodfordia fruticosa.