Project description:Most sarcomas have complex karyotype and are characterized by multiple chromosomal rearrangements. Moreover, sarcomas very frequently maintain their telomeres by recombination in the process called Alternative Lengthening of Telomeres (ALT) which enables their continuous growth and immortalization. Previously our group showed that orphan receptors bind specifically to the ALT telomeres and that their presence is important for the ALT mechanism. In these studies we focus on the function of orphan receptors at the telomeres and their contribution to telomeric recombination. We demonstrate that orphan receptors induce proximity of their binding sites in telomeric and genomic context and reveal novel aspects of ALT which are telomere-genome rearrangements which can underlie complexity of sarcomas. Our data perturb the dogma of telomere function in protecting the genome integrity. Here we show that in some cases telomeres may in fact drive genomic instability and chromosomal rearrangements by recombination with genomic sites. Characterization of TRF2 and orphan receptor NR2F/C2 binding sites in ALT (-) and ALT (+) cells.
Project description:Most sarcomas have complex karyotype and are characterized by multiple chromosomal rearrangements. Moreover, sarcomas very frequently maintain their telomeres by recombination in the process called Alternative Lengthening of Telomeres (ALT) which enables their continuous growth and immortalization. Previously our group showed that orphan receptors bind specifically to the ALT telomeres and that their presence is important for the ALT mechanism. In these studies we focus on the function of orphan receptors at the telomeres and their contribution to telomeric recombination. We demonstrate that orphan receptors induce proximity of their binding sites in telomeric and genomic context and reveal novel aspects of ALT which are telomere-genome rearrangements which can underlie complexity of sarcomas. Our data perturb the dogma of telomere function in protecting the genome integrity. Here we show that in some cases telomeres may in fact drive genomic instability and chromosomal rearrangements by recombination with genomic sites.
Project description:Telomeres constitute the ends of linear chromosomes and together with the shelterin complex form a structure essential for genome maintenance and stability. In addition to the constitutive binding of the shelterin complex, other direct, yet more transient interactions are mediated by the CST complex and HOT1, while subtelomeric variant repeats are recognized by NR2C/F transcription factors. Recently, the Kruppel-like zinc finger protein ZBTB48 has been described as a novel telomere-associated factor in the vertebrate lineage. Here, we show that ZBTB48 binds directly both to telomeric as well as to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism.
Project description:Here we show that ZBTB48 binds directly both to telomeric as well as to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism.
Project description:Background. Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. Results To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. Conclusions piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.
Project description:We performed single-molecule telomere length and telomere fusion analysis in patients at different stages of chronic lymphocytic leukaemia (CLL). Our work identified the shortest telomeres ever recorded in primary human tissue reinforcing the concept that there is significant cell division in CLL. Furthermore, we provide direct evidence that critical telomere shortening, dysfunction and fusion contribute to disease progression. The frequency of short telomeres and fusion events increased with advanced disease, but importantly these were also found in a subset of early-stage patient samples indicating that these events can precede disease progression. Sequence analysis of fusion events isolated from individuals with the shortest telomeres revealed limited numbers of repeats at the breakpoint, sub-telomeric deletion and microhomology. Array-CGH analysis of individuals displaying evidence of telomere dysfunction revealed large-scale genomic rearrangements that were concentrated in the telomeric regions; this was not observed in samples with longer telomeres.
Project description:Here we show that ZBTB48 binds directly both to telomeric as well as to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism.
Project description:We performed single-molecule telomere length and telomere fusion analysis in patients at different stages of chronic lymphocytic leukaemia (CLL). Our work identified the shortest telomeres ever recorded in primary human tissue reinforcing the concept that there is significant cell division in CLL. Furthermore, we provide direct evidence that critical telomere shortening, dysfunction and fusion contribute to disease progression. The frequency of short telomeres and fusion events increased with advanced disease, but importantly these were also found in a subset of early-stage patient samples indicating that these events can precede disease progression. Sequence analysis of fusion events isolated from individuals with the shortest telomeres revealed limited numbers of repeats at the breakpoint, sub-telomeric deletion and microhomology. Array-CGH analysis of individuals displaying evidence of telomere dysfunction revealed large-scale genomic rearrangements that were concentrated in the telomeric regions; this was not observed in samples with longer telomeres. Array CGH was undertaken on six individuals (five CLL stage C and one stage A) that displayed evidence of telomere dysfunction, and four (three CLL stage A and one stage B) that displayed longer and apparently stable telomeres.
Project description:The extracellular parasite Trypanosoma brucei evades the immune system of the mammalian host by periodically exchanging its variant surface glycoprotein (VSG) coat. Hereby, only one VSG gene is transcribed from one of 15 subtelomeric so-called bloodstream form expression sites (BES) at any given timepoint, while all other BESs are silenced. VSG gene expression is altered by homologous recombination using a large VSG gene repertoire or by a so-called in situ switch, which activates a previously silent BES. Transcriptional activation, VSG switching and VSG silencing during developmental differentiation from the bloodstream form to the procyclic form present in the tsetse fly vector are tightly regulated. Due to their subtelomeric position, telomere-associated proteins are involved in the regulation of VSG expression. Three functional homologs of mammalian telomere complex proteins have been characterized thus far, and novel telomere-interacting proteins, such as telomere-associated protein 1 (TelAP1), have recently been identified. Here, we used mass spectrometry-based proteomics and interactomics approaches, telomere pull-down assays with recombinant material and immunofluorescence analysis to elucidate the interactions of 21 other putative TelAPs. We investigated the influence on VSG expression and showed that depletion of TelAPs does not ultimately lead to changes in VSG expression. Additionally, we examined the interaction patterns of four TelAPs with the TbTRF/TbTIF2/TbRAP1 telomere complex by reciprocal affinity purification. We further propose that TelAP1 interacts with Tb927.6.4330, now called TelAP2, and that TelAP1 depends on this interaction to form a complex with the telomeric proteins TbTRF, TbTIF2 and TbRAP1.
Project description:Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C)approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.