Project description:Transcriptional profiling of sweet corn plant density (crowding stress) tolerance influencing yield. Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The experiment was conducted to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network.
Project description:Transcriptional profiling of sweet corn response to plant density (crowding stress). Determine the extent to which hybrid and environment influences crowding stress response and identify crowding stress transcriptional response in sweet corn
Project description:Transcriptional profiling of sweet corn plant density (crowding stress) tolerance influencing yield. Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The experiment was conducted to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. 3 high-and 3 low-yielding hybrids with 2-3 biological replications grown under high population density (crowding stress)
Project description:A genome-wide analysis of gene expression of the root-colonizing bacterium Pseudomonas putida KT2440 in the rhizosphere of corn (Zea mays var. Girona). To identify reliable rhizosphere differentially expressed genes by this bacterium, populations of P. putida KT2440 previously exposed to a rhizospheric life style for seven days in the rhizosphere of corn were compared with populations previously exposed to a rhizospheric life style for a long period of 138 days.
Project description:It has been performed a genome-wide analysis of gene expression of the root-colonizing bacterium Pseudomonas putida KT2440 in the rhizosphere of corn (Zea mays var. Girona. To identify reliable rhizosphere differentially expressed genes, rhizosphere populations of P. putida bacteria cells were compared with three alternative controls: i) planktonic cells growing exponentially in rich medium (LB), ii) planktonic cells in stationary phase in LB, and iii) sessile populations established in sand microcosms, under the same conditions used to grow inoculated corn plants.
2007-09-02 | E-MEXP-949 | biostudies-arrayexpress
Project description:EMG produced TPA metagenomics assembly of PRJEB32683 data set (Shotgun of corn roots infected with Enterobacteriaceae).
Project description:As no commercial array is available for sorghum microarray analysis, we designed an array based on the annotation of Sbi1.4 gene set and the available 209,835 sorghum ESTs from the NCBI EST database. The array will be used for investigating the expression divergence between grain and sweet sorghum lines under normal and sucrose treatments