Project description:Engineered nanoparticles (ENPs) are increasingly used to generate innovative industrial and medical goods. Because of their broad applications, they form a new class of pollutants with potential eco-toxicological impacts on marine ecosystems. Attempting to evaluate the risk, we investigated the toxicity of Iron and Zinc oxide ENPs on three picophytoplanktonic strains of algae: Micromonas commoda, Ostreococcus tauri and Nannochloris sp. Microalgae responses are highly species-dependent, Micromonas commoda growth being severely impaired by both ENP types whereas Ostreococcus tauri or Nannochloris sp. are resistant. ZnO ENPs have higher toxicity than iron ENPs though growth of M. commoda was severely inhibited by Fe2O3 ENPs. Transcriptome-wide analysis after exposure of M. commoda to ENPs shows that the altered biological processes mainly take place in the cytoplasm and that the response to ENPs is largely metabolic in nature: stimulation of carbohydrate metabolism, light harvesting processes and alteration of the nitrogen pathway. In addition, a severe disruption of ribosome structure and translation processes is observed.
Project description:We integrated genomic and transcriptomic analysis of a newly isolated obligate Methylomonas sp. DH-1 grown on methane and methanol. Comparative transcriptomic analysis between methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, the secondary metabolites pathways and the oxidative stress related genes