Project description:Recent developments in spatially resolved -omics have enabled studies linking gene expression and metabolite levels to tissue morphology, offering new insights into biological pathways. By capturing multiple modalities on matched tissue sections, one can better probe how different biological entities interact in a spatially coordinated manner. However, such cross-modality integration presents experimental and computational challenges. To align multimodal datasets into a shared coordinate system and facilitate enhanced integration and analysis, we propose MAGPIE (Multi-modal Alignment of Genes and Peaks for Integrated Exploration), a framework for co-registering spatially resolved transcriptomics, metabolomics, and tissue morphology from the same or consecutive sections. We illustrate the generalisability and scalability of MAGPIE on spatial multi-omics data from multiple tissues, combining Visium with both MALDI and DESI mass spectrometry imaging. MAGPIE was also applied to newly generated multimodal datasets created using a specialised experimental sampling strategy to characterise the metabolic and transcriptomic landscape in an in vivo model of drug-induced pulmonary fibrosis and to showcase the linking of small-molecule co-detection with endogenous responses in lung tissue. MAGPIE highlights the refined resolution and increased interpretability of spatial multimodal analyses in studying tissue injury, particularly in pharmacological contexts, and offers a modular, accessible computational workflow for data integration.
Project description:Sequences from the uropygial gland skin in a brood parastie - host system: great spotted cuckoos (Clamator glandarius) and Eurasian magpies (Pica pica)
Project description:As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex population history. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. In addition, our analyses indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.