Project description:Androgenetic alopecia (AGA) is a progressive dermatological disorder of scalp hair loss, while beard growth in AGA is normally unaffected. In an attempt to identify genes that contribute to the androgen-responsive phenotype, we performed a thorough transcriptome profiling of hair follicles (HFs) from frontal and occipital scalp, chin and armpit. Through this analysis, three specifiic different expressed genes(LGALS7B, FABP4, FOS) were identified using qPCR, immunofluorescence. The differences in the expression of these genes in cultured beard and frontal HF reflected less inflammation and immune response, more active keratinization and PPARs signaling in beard HFs compared to frontal HFs. This profiling results be used to understand the different molecular mechanism of hair growth between AGA beard and HF, and those provided a possibility for the enlarged beard phenotype and AGA treatment.
Project description:High-throughput sequencing of endogenous small RNAs from the moss Physcomitrella patens. This dataset encompasses microRNAs and other small RNAs of ~20-24 nucleotides expressed in the moss P. patens. SAMPLES UPDATED JULY 9, 2007 TO INCLUDE DATA ON SEQUENCED SMALL RNAS THAT DO NOT MATCH THE P. PATENS GENOME Keywords: High throughput small RNA sequencing
Project description:4plex_physco_2014-05 - ppmax2 response to gr24 - How does the Ppmax2 moss mutant respond to Strigolactone (GR24)? - Two moss genotypes are used: WT and the Ppmax2 mutant. Moss tissues are fragmented, then plated on medium (Petri dish with cellophane disks) and cultivated for 3 weeks. Moss tissues are then transfered for 6 hours on acetone-containing medium (control treatment, for WT and Ppmax2) or GR24 (1 microM, in acetone)-containing medium (for Ppmax2). After 6 hours, the moss tissues are collected, quickly forzen in liquid nitrogen. RNA are isolated using the Quiagen RNeasy Plant mini kit (including a RNase-free DNase treatment on column). Two similar experiments (T1 and T2) have been led.
Project description:The PR domain containing 1a, with ZNF domain factor, gene prdm1a plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and Rohon-Beard neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.