Project description:A total of 18 libraries from Setaria viridis were constructed using the Illumina TruSeq sample preparation method. We used two biological replicate libraries from the leaf, whole panicles (inside leaf sheath), whole panicles (coming out of leaf sheath), whole panicles (completely out of leaf sheath), whole panicles (completely out of leaf sheath, after pollination), spikelet (inside leaf sheath), spikelet (coming out of leaf sheath), and spikelet (completely out of leaf sheath).
Project description:Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different β-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the beta-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the beta-tubulin60D gene, we generated new beta-tubulin60D null alleles (beta-tubulin60DM) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin1, an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of beta-tubulin60D. We also found a missense mutation in the Pin1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the β-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that beta-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense beta-tubulin60D mutation in bristle morphogenesis
Project description:Elevated CO2 (eCO2) has an influence on developing leaf growth of rice (Oryza sativa cv. Nipponbare), specifically lower growth stage than P4 (plastochron number), resulting in decrease in leaf size compared with that in ambient CO2 (aCO2). Since several micro RNAs are associated with the regulation of plant leaf development, in order to clarify which micro RNAs are involved in the decrease of leaf blade size at eCO2, we carried out high-throughput small RNA sequencing analysis and compared the amount of identified miRNAs in developing rice leaf blade grown between aCO2 and eCO2 condition.