Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC) is not well understood. Comprehensive molecular analyses were performed including high-pass whole-genome sequencing, targeted deep DNA sequencing, RNA sequencing, reverse-phase protein arrays, mass spectrometry-based proteomics and phosphoproteomics, and immune profiling on primary and metastatic sites from highly clinically annotated HGSC samples. Samples were obtained pre-treatment based on a laparoscopic triage algorithm from patients who underwent R0 tumor debulking or received neoadjuvant chemotherapy (NACT) with excellent or poor response.
Project description:It has been shown that in mammalian cells alternative transcription initiation is extensively regulated during development and across cell-types, which confers dynamic transcript 5âUTR repertoire. However it is underexplored how the heterogeneity of 5âUTR isoforms would affect the downstream steps for protein expression, such as translation. To this end, we globally compared the translational profile of distinct mRNA TSS isoforms in mouse fibroblast cells, by combining deep-sequencing based mRNA 5âends profiling and polysome fractionation. We demonstrated the extensive translation regulation conferred by TSS heterogeneity. 5'end sequencing in seven polysome fractions, in two replicates, using Illumina Hiseq2000
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare transcriptome profiling (RNA-seq) of E17.5 placentas from control, early-onset (EO) and later-onset (LO) preeclampsia (PE) mice. Methods: E17.5 placental mRNA profiles of offspring from control, EO and LO PE mice were generated by deep sequencing, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the E17.5 placentas from control EO and LO PE mice with BWA workflow and 34,115 transcripts with TopHat workflow. R Conclusions: Our study represents the first detailed analysis of E17.5 placentas transcriptomes, with biologic replicates, generated by mRNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within tissue. We conclude that mRNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
Project description:Expression levels of human genes vary extensive among individuals. Gene expression determines cell function and characteristics thus this variation likely contributes to phenotypic variation. Genetic studies have shown that there is a heritable component to gene expression variation, and have identified genomic regions that contain polymorphic regulators. However, most of these regions are quite large, and few regulators have been identified. In this genetic of gene expression study, we used a large sample to search the genome for polymorphic regulators that influence gene expression, and followed up the results with deep sequencing of transcriptomes and molecular analyses. Key word(s): Transcriptome Analysis genetics of gene expression study, 41 Coriell cell line samples examined.
Project description:Expression levels of human genes vary extensive among individuals. Gene expression determines cell function and characteristics thus this variation likely contributes to phenotypic variation. Genetic studies have shown that there is a heritable component to gene expression variation, and have identified genomic regions that contain polymorphic regulators. However, most of these regions are quite large, and few regulators have been identified. In this genetic of gene expression study, we used a large sample to search the genome for polymorphic regulators that influence gene expression, and followed up the results with deep sequencing of transcriptomes and molecular analyses. Key word(s): Transcriptome Analysis
Project description:Previous studies in the mouse indicated that Arid3a plays a critical role in the first cell fate decision required for generation of trophectoderm (TE). Here, we demonstrate that Arid3a is widely expressed during mouse and human placentation and essential for early embryonic viability. Arid3a is located within trophoblast giant cells and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Conventional Arid3a knockout embryos suffer restricted intrauterine growth with sever defects in placental structural organization. Arid3a null placentas show aberrant expression of subtype-specific markers as well as significant alteration in inflammatory response-related genes, cytokines and chemokines. We provide evidence that BMP4-mediated induction of trophoblast stem (TS)-like cells from human induced pluripotent (iPS) stem cells results in ARID3A upregulation and cytoplasmic to nuclear translocation. Overexpression of ARID3A in human iPS and BMP4-mediated TS-like cells up-regulated TE markers, whereas pluripotent markers were down-regulated. Our results indicate that the roles of Arid3a are conserved and essential for mammalian placental development through regulation of both intrinsic and extrinsic developmental programs. Placentas of E10.5 and E11.5 wild type (WT) and Arid3a-/- mice were generated by deep sequencing, using Illumina
Project description:Genetic variation governs protein expression through both transcriptional and post-transcriptional processes. To investigate this relationship, we combined a multiplexed, mass spectrometry-based method for protein quantification with an emerging mouse model harboring extensive genetic variation from 8 founder strains. We collected genome-wide mRNA and protein profiling measurements to link genetic variation to protein expression differences in livers from 192 diversity outcross mice. We observed nearly 3,700 protein-level quantitative trait loci (pQTL) with an equal proportion of proteins regulated directly by their cognate mRNA as uncoupled from their transcript. Our analysis reveals an extensive array of at least five models for genetic variant control of protein abundance including direct protein-to-protein associations that act to achieve stoichiometric balance of functionally related enzymes and subunits of multimeric complexes.