Project description:To distinguish transcripts expressed from each of the three wheat genomes and those from the rye chromatins, genomic probes generated from diploid progenitors of wheat and rye were synthesized
Project description:Transcriptional profiling of three different genotypes (wheat cv Chinese Spring, and the wheat-rye addition lines 3R and 6R) comparing control and 24h exposure to 200 μM de AlCl3. The goal was to determine the effects of AlCl3 on global gene expression in each genotype and study the differences between them.
Project description:To distinguish transcripts expressed from each of the three wheat genomes and those from the rye chromatins, genomic probes generated from diploid progenitors of wheat and rye were synthesized Consensus sequences for probe design were generated from local unigene clusters. EST and cDNA sequences were downloaded from NCBI. A total of 52,589 pairs of probes were designed. Two 60 bp probes were designed from each consensus sequence. The array was manufactured by NimbleGen and synthesized on 12-plex arrays. Two independent biological replicates were used in separate hybridizations. Each biological replicate was a total RNA sample extracted from the whole tissue of two seedlings.
Project description:The present transcript profiling compares the gene expression during cold-acclimation in different genotypes of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and rye (Secale cereale L.) in order to determine factors influencing frost tolerance. Because of its outstanding robustness against adverse environmental conditions rye is considered to be a model species for abiotic stress tolerance. Wheat is moderate frost-tolerant and barley is most sensitive species in this study. The aim of this study elucidate conserved, as well as, species-specific gene regulation across the Triticeae. Furthermore, transcript abundances were correlated between the distinct frost tolerances of genotypes within each species in order to find candidate genes for frost tolerance.
Project description:Rye, wheat and barley contain gluten, proteins that trigger immune-mediated inflammation of the small intestine in people with coeliac disease (CD). The only treatment for CD is a lifelong gluten-free diet. To be classified as gluten-free by the World Health Organisation the gluten content must be below 20 mg/kg, but Australia has a more rigorous standard of no detectable gluten and not made from wheat, barley, rye or oats. The purpose of this study was to devise an LC-MS/MS method to detect rye in food. An MS-based assay could overcome some of the limitations of current immunoassays, wherein antibodies often show cross-reactivity and lack specificity due to the diversity of gluten proteins in commercial food and the homology between rye and wheat gluten isoforms. Comprehensive proteomic analysis of 20 rye cultivars originating from 12 countries enabled the identification of a panel of candidate rye-specific peptide markers. The peptide markers were assessed in 16 cereal and pseudo-cereal grains, and in 10 breakfast cereals and 7 snacks foods. Spelt flour was contaminated with rye at a level of 2% and trace levels of rye were found in a breakfast cereal that based on its labelled ingredients should be gluten-free.
Project description:Expression analysis of individual homoeologous wheat genome- and rye genome-specific transcripts in a 2BS.2RL wheat-rye translocation
Project description:Major chromosome rearrangements in intergeneric wheat x rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis
Project description:An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 days of age on immune competence related parameters and performance of broiler. A total number of 960 one-day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to one of three experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d14-28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds.