Project description:Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts.
Project description:This study investigated the effects of 67 species of macroalgae on methanogenesis and rumen fermentation in vitro. Specimens were analyzed for their effect on ruminal fermentation and microbial community profiles. Incubations were carried out in an automated gas production system for 24-h and macroalgae were tested at 2% (feed dry matter basis) inclusion rate. Methane yield was decreased 99% by Asparagopsis taxiformis (AT) when compared with the control. Colpomenia peregrina also decreased methane yield 14% compared with control; no other species influenced methane yield. Total gas production was decreased 14 and 10% by AT and Sargassum horneri compared with control, respectively. Total volatile fatty acid (VFA) concentration was decreased between 5 and 8% by 3 macroalgae, whereas AT reduced it by 10%. Molar proportion of acetate was decreased 9% by AT, along with an increase in propionate by 14%. Asparagopsis taxiformis also increased butyrate and valerate molar proportions by 7 and 24%, respectively, whereas 3 macroalgae species decreased molar proportion of butyrate 3 to 5%. Vertebrata lanosa increased ammonia concentration, whereas 3 other species decreased it. Inclusion of AT decreased relative abundance of Prevotella, Bacteroidales, Firmicutes and Methanobacteriaceae, whereas Clostridium, Anaerovibrio and Methanobrevibacter were increased. Specific gene activities for Methanosphaera stadtmane and Methanobrevibacter ruminantium were decreased by AT inclusion. In this in vitro study, Asparagopsis taxiformis was most effective in decreasing methane concentration and yield, but also decreased total gas production and VFA concentration which indicates overall inhibition of ruminal fermentation. No other macroalgae were identified as potential mitigants of enteric methane.
Project description:The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.
Project description:The relationship between feed intake at production levels and enteric CH4 production in ruminants consuming forage-based diets is well described and considered to be strongly linear. Unlike temperate grazing systems, the intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons). The relationship between CH4 production and feed intake in animals fed well below maintenance is unexplored, but changes in key digestive parameters in animals fed at low levels suggest that this relationship may be altered. We conducted a study using Boran yearling steers (n 12; live weight: 162·3 kg) in a 4 × 4 Latin square design to assess the effect of moderate to severe undernutrition on apparent digestibility, rumen turnover and enteric CH4 production of cattle consuming a tropical forage diet. We concluded that while production of CH4 decreased (1133·3-65·0 g CH4/d; P < 0·0001), over the range of feeding from about 1·0 to 0·4 maintenance energy requirement, both CH4 yield (29·0-31·2 g CH4/kg DM intake; P < 0·001) and CH4 conversion factor (Ym 9·1-10·1 MJ CH4/MJ gross energy intake; P < 0·01) increased as intake fell and postulate that this may be attributable to changes in nutrient partitioning. We suggest there is a case for revising emission factors of ruminants where there are seasonal nutritional deficits and both environmental and financial benefits for improved feeding of animals under nutritional stress.
Project description:Livestock production is a main source of anthropogenic greenhouse gases (GHG). The main gases are CH4 with a global warming potential (GWP) 25 times and nitrous oxide (N2O) with a GWP 298 times, that of carbon dioxide (CO2) arising from enteric fermentation or from manure management, respectively. In fact, CH4 is the second most important GHG emitted globally. This current scenario has increased the concerns about global warming and encouraged the development of intensive research on different natural compounds to be used as feed additives in ruminant rations and modify the rumen ecosystem, fermentation pattern, and mitigate enteric CH4. The compounds most studied are the secondary metabolites of plants, which include a vast array of chemical substances like polyphenols and saponins that are present in plant tissues of different species, but the results are not consistent, and the extraction cost has constrained their utilization in practical animal feeding. Other new compounds of interest include polysaccharide biopolymers such as chitosan, mainly obtained as a marine co-product. As with other compounds, the effect of chitosan on the rumen microbial population depends on the source, purity, dose, process of extraction, and storage. In addition, it is important to identify compounds without adverse effects on rumen fermentation. The present review is aimed at providing information about chitosan for dietary manipulation to be considered for future studies to mitigate enteric methane and reduce the environmental impact of GHGs arising from livestock production systems. Chitosan is a promising agent with methane mitigating effects, but further research is required with in vivo models to establish effective daily doses without any detrimental effect to the animal and consider its addition in practical rations as well as the economic cost of methane mitigation.
Project description:Two experimental feeding trials were conducted during four weeks to evaluate the use of Ulva lactuca in shrimp culture: (1) for wastewater bioremediation, and (2) using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1, shrimp reared under seaweed U. lactuca water exchange in a re-circulation system (SWE) resulted in similar growth and feed utilization as shrimp reared with clean water exchange (CWE). Shrimp under no water exchange (NWE) resulted in significant lower growth and higher feed conversion rate (FCR) compared to the other treatments (p < 0.05). Nitrogen compounds and phosphate in water from SWE and CWE treatments did not present significant differences during the experimental trial (p > 0.05). In feeding trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal (0UL, 1UL, 2UL, and 3UL). Shrimp fed the 3 UL diet resulted in a significant (p < 0.05) improvement of growth and FCR, and enhanced whole shrimp lipid and carotenoid content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is suggested as a desirable species for wastewater bioremediation in integrated aquaculture systems, and its meal as a good feed additive for farmed shrimp.
Project description:Several studies have shown the importance of using seaweed liquid extract (True-Algae-Max, TAM) as a fish feed additive, and fish-water conditioner. In addition, TAM has demonstrated significant growth improvement when used as a plant growth biostimulant. This study investigates whether seaweed liquid extract (TAM) can achieve good results in new experimental fields such as chromium remediation, plant germination, and live feed supplementation for marine invertebrate Copepod (Oithona nana). In this study, several doses of TAM were tested, for the first time, for their impact on the remediation of chromium (Cr6+) ions from aqueous solutions and as an aqua feed additive for marine copepods (Oithona nana). In addition, it has been tested as promising for the seed germination of Fenugreek (Trigonella foenum-graecum) and Faba bean (Vicia faba L.). The most important factors influencing the removal (%) of Cr6+, identified using a two-level Plackett-Burman factorial design, were selected for additional optimization utilizing a rotatable central composite design. The maximum adsorption of Cr6+ was 93.65% under ideal operating circumstances, which included an initial Cr6+ concentration of 60 mg L-1, a temperature of 25 °C, a pH of 3, a TAM biomass of 0.05 g, and a contact time of 60 min at agitation conditions. Plackett-Burman design data shows the significance of each factor and how well the model fits the Cr6+ removal. The results of the germination experiment revealed that the highest significant increase in seed germination was achieved using a TAM level of 0.30 mg mL-1 with V. faba (88%) and 0.03 mg mL-1 with T. foenum-graecum (96.6%). Additionally, compared to the control group, TAM at a level of 0.037 mg mL-1 showed high root length enhancement on V. faba (184%) and T. foenum-graecum (188%). The results of the copepod O. nana feeding additive experiment found that the group fed on starch supplemented with TAM at a level of 0.3 mL L-1, compared to the control group that fed starch only, showed the highest increment in population growth (134.74%), fecundity (270.16%), and population composition of males (133.45%), adults (120.37%), and nauplius (203.18%). Moreover, compared to the control group, the copepod that fed starch supplemented with TAM levels achieved the highest Omega-9 content. In conclusion, it is shown that TAM is a feasible, efficient, and sustainable solution for biodegradable adsorbent for the Cr6+ from aqueous solution, enhances plant seed germination and root length, and is a novel feed additive for marine copepod O. nana, especially in marine invertebrate hatcheries.
Project description:It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.
Project description:We report here a methanotroph, Methylotuvimicrobium buryatense 5GB1C, that consumes methane at 500ppm at rates several times higher than any previously published. Analyses of bioreactor-based performance and RNAseq based transcriptomics suggest that this superior ability to utilize low methane is based at least in part on an extremely low non-growth associated maintenance energy and on a 5-fold higher methane specific affinity than previous reports.
Project description:IntroductionThere is a growing interest in utilizing seaweed in ruminant diets for mitigating enteric methane (CH4) emissions while improving animal health. Chondrus crispus is a red seaweed that grows in the Gulf of Maine (United States) and has shown to suppress CH4 production in vitro. Organic dairy producers in Maine are currently feeding seaweed due to herd health promoting benefits. However, large-scale adoption depends on technical and financial factors, as well as validation from pilot studies.MethodsA survey was developed to identify barriers and drivers towards the adoption of CH4-reducing algal-based feeds. Concurrently, a randomized complete block design study was conducted to investigate the effect of C. crispus on enteric CH4 emissions and milk production in a typical Maine organic dairy farm. Twenty-two organically certified Holstein and Jersey cows averaging 29 ± 6.8 kg of milk/d and 150 ± 69 days in milk, were blocked and randomly assigned to a control diet without C. crispus (0CC), or with 6% [dry matter (DM) basis] C. crispus (6CC). Samples were collected on the last week of the 2-wk covariate period, and wk 3, 5, 8, and 10 after initiation of treatments for a total of 12 weeks. Gaseous emissions were measured using a GreenFeed unit. Data were analyzed using the MIXED procedure of SAS with repeated measures over time.ResultsAll survey respondents (n = 35; 54% response rate) were familiar with seaweeds as feed, and 34% were already users. Producers who were willing to pay 0.64 USD/cow/d on average for a CH4-reducing algal-based feed, also stated the need for co-benefits in terms of cattle health and performance as a requirement for adoption. Feeding 6CC decreased enteric CH4 production by 13.9% compared with 0CC (401 vs. 466 g/d). Further, milk yield (mean = 27.1 kg/d), CH4 intensity (mean = 15.2 g of CH4/kg of energy corrected milk), and concentrations and yields of milk fat and true protein were not affected by treatments.DiscussionProducer receptiveness to CH4-reducing algal-based feeds will not only be dependent on purchase price, but also on co-benefits and simplicity of integration into existing feed practices. Feeding C. crispus at 6% of the diet DM decreased CH4 production in dairy cows by 13.9% without negative effects on milk yield and composition. Identifying the bioactive compounds in C. crispus is critical to understand the effect of this red seaweed on mitigating enteric CH4 emissions in dairy cows.