Project description:Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A*-ILF2, associated with immune phenotypes, MYT1L, PTPRN2,CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites are over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to Macaca mulattamacaques, indicates that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue-specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; variation in CTCF and TF binding sites is an underlying mechanism in primary tissues, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supera- and sub-threshold GWAS peaks in immunological and neurological disorders.
Project description:Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily-conserved histone H3 variant, which directs kinetochore assembly and hence, centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity selected solubilised fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 is required for transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilises H3 nucleosomes on centromere DNA through transcription-mediated histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Project description:Activating Transcription Factor 4 (ATF4) is a transcription factor induced by the integrated stress response (ISR). This experiment is a genome-wide profiling of ATF4-dependent RNA expression in human HAP-1 cells. HAP-1 is a near-haploid human cell line that was derived from KBM-7 cells isolated from a patient with Chronic Myelogenous Leukemia. We analyzed WT and ATF4 KO cells. We induced ATF4 expression by mimicking amino acid starvation with the drug histidinol. RNA expression profiles were generated for WT and ATF4 KO HAP1 cells. ATF4 genes were mutated using Cas9 genome editing technology. Amino acid starvation was mimicked by treating WT and ATF4 KO cells with 2 mM histidinol for 24 hours, which increases ATF4 expression.