Project description:Quantitative multi-kingdom profiling of a neonatal ICU cohort gut microbiome samples using cell-based spike-in plus additional samples to support Multi-Kingdom SpikeSeq and confirm mouse colonization CFU data.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.
Project description:The gut microbiome plays a crucial role in modulating human immunity. Previously, we found that antibiotic-induced microbiome perturbation affected influenza vaccine responses depending on pre-existing immunity levels. However, its impact on primary responses remains unclear. Here, we employed a systems biology approach to analyze the impact of antibiotic administration on primary and secondary immune responses to the rabies vaccine in humans. Antibiotic administration disrupted the microbiome, reducing gut bacterial load and causing long-lasting reduction in commensal diversity. This alteration was associated with reduced rabies-specific humoral responses. Multi-omics profiling revealed that antibiotic administration induced: 1) an enhanced pro-inflammatory signature early after vaccination, 2) a shift in the balance of vaccine-specific T-helper 1(Th1) to T-follicular-helper response towards Th1 phenotype, 3) profound alterations in metabolites, particularly in secondary bile acids in blood. By integrating multi-omics datasets, we generated a multi-scale, multi-response network that revealed key regulatory nodes including the microbiota, secondary bile acids, and humoral immunity to vaccination.