Project description:Methanococcus maripaludis is a methanogenic Archaea that conserves energy from molecular hydrogen to reduce carbon dioxide to methane. Chemostat grown cultures limited for phosphate or leucine were compared to determine the regulatory response to leucine limitation. Keywords: archaea, hydrogen, leucine, phosphate, nutrient limitation, growth rate, methanogen
Project description:Methanococcus maripaludis is a methanogenic Archaea that conserves energy from molecular hydrogen to reduce carbon dioxide to methane. Chemostat grown cultures limited for hydrogen, phosphate, or leucine were compared to determine the regulatory response to hydrogen limitation. This was done by comparing hydrogen limited cultures to both leucine limited and phosphate limited cultures. Slow and rapid growing samples limited for either hydrogen or phosphate were compared to determine the regulatory effects of growth rate. Keywords: archaea, hydrogen, leucine, phosphate, nutrient limitation, growth rate, methanogen
Project description:Population dynamics of methanogenic genera was investigated in pilot anaerobic digesters. Cattle manure and two-phase olive mill wastes were codigested at a 3:1 ratio in two reactors operated at 37 ï¾°C and 55 ï¾°C. Other two reactors were run with either residue at 37 ï¾°C. Sludge DNA extracted from samples taken from all four reactors on days 4, 14 and 28 of digestion was used for hybridisation with the AnaeroChip, an oligonucleotide microarray targeting those groups of methanogenic archaea that are commonly found under mesophilic and thermophilic conditions (Franke-Whittle et al. 2009, in press, doi:10.1016/j.mimet.2009.09.017).
Project description:Background: Biological conversion of the surplus of renewable electricity to CH4 could support energy storage and strengthen the power grid. Biological methanation (BM) is closely linked to the activity of biogas-producing bacterial community and methanogenic Archaea in particular. During reactor operations, the microbiome is often subject to various changes whereby the microorganisms are challenged to adapt to the new conditions. In this study, a hydrogenotrophic-adapted microbial community in a laboratory-scale BM fermenter was monitored for its pH, gas production, conversion yields and composition. To investigate the robustness of BM regarding power oscillations, the biogas microbiome was exposed to five H2 starvations patterns for several hours.