Project description:The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption actually hinge on gut microbial metabolism. However, flavonoids are consumed in a largely glycosylated form, rendering them poorly available for small intestinal absorption and subjecting them to microbial metabolism in the colon. We show that a single gut microbial flavonoid catabolite is sufficient to reduce diet-induced cardiometabolic disease burden in mice. Dietary supplementation with elderberry extract attenuated obesity and continuous delivery of the catabolite 4-hydroxphenylacetic acid was sufficient to reverse hepatic steatosis. Analysis of human gut metagenomes revealed that under one percent contains a flavonol catabolic pathway, underscoring the rarity of this process. Our study will impact the design of dietary and probiotic interventions to complement traditional cardiometabolic treatment strategies.
Project description:The aim of this study is to obtain a systems level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven draft genomes were binned from the metagenomes. At an early stage (2 d), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment with exogenous cobalamin compared to the one without cobalamin addition. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid-producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted qPCR analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin. Furthermore, Dehalococcoides' corrinoid salvaging and modification pathway was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles of members of dechlorinating communities under cobalamin-limited conditions.
Project description:Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world’s oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions.
Project description:A photosynthetic cyanobacterial/microbial consortium was incubated in the dark for 12 days. During the course of this dark incubation, samples were taken every two days from the biomass portion and the liquid (supernatant) portion of the bioreactor. Metaproteomics analysis was conducted on these time series samples and binned and assembled metagenomes from the same samples were used as the database for protein identification.
Project description:Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures. Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures.
Project description:Aquatic microbial communities contain a vast amount of genetic diversity and we have much to learn about how this manifests to functional diversity. Existing long-term time series data includes 16S tags, metagenomes, single amplified genomes (SAGs), and genomes from metagenomes (GFMs). Information about functional diversity and metabolic capabilities is often unavailable. The study sites include three lakes that are the subject of intense study through the North Temperate Lakes Long Term Ecological Research site: Sparkling Lake (oligotrophic), Lake Mendota (eutrophic), and Trout Bog Lake (dystrophic).
The work (proposal:https://doi.org/10.46936/10.25585/60000947) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw. A 2m deep permafrost sample and it overlying active layer were sampled and their metagenome analysed. For microarray analyses, 8 other soil samples from the same region were used for comparison purposes.