Project description:Aging is a multifactorial process with significant functional alterations of the human body including endocrinal systems which control the whole-body physiology and metabolism. In this vein, aging-induced decline of endocrine function are associated with multiple physiological and metabolic diseases. However, aging-associated molecular shifts in the pituitary gland, the central organ of the endocrine system, have not been dissected systemically. In this study, we conducted single-cell transcriptomic analysis of the anterior pituitary gland by comparing old and young male mice. Single-cell transcriptomics not only increased the resolution for clustering of various cell types in the pituitary gland, but also enabled detailed analysis of differential expression and intercellular communication caused by aging. In summary, our study constructed the first single-cell transcriptomic atlas of pituitary aging and identified associated features of in a single-cell level, providing resources to develop novel potential therapeutic targets for aging-associated endocrine dysfunction.
Project description:Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.
Project description:Using the single-cell sequencing technology, the authors aim to make a construction of a single-cell cell atlas of young and old pituitary cells. Moreover, the sorted Ai6+ cells from pituitary of Igha-Cre; Ai6 were also analyzed by single-cell sequencing.
Project description:Purpose: Molecular mechanisms of penile corpus cavernosum aging and male age-related erectile dysfunction (ED) remain unclear. Here we profiled young and old rat penile corpus cavernousm by single-cell RNA sequencing (scRNA-seq). Methods:To map the single-cell transcriptomic landscape of penile corpus cavernosum during aging, we performed uniform manifold approximation and projection (UMAP), differential gene expression analysis (DGEs), pseudotime analysis and single-cell entropy algorithm to dissect cellular composition and transcriptional heterogeneity. For validation analysis, we further performed immunofluorescence studies on key molecules involved during penile corpus cavernosum aging. Results: After stringent filtering,transcriptomes of 14,879 single cells (8,557 young and 6,322 old) derived from penile corpus cavernosum of 5 young (3 months) and 5 old (23 months) rats were analyzed subsequently. Clustering analysis of cell-type specific gene expression identified 19 cell types, such as smooth muscle cells, endothelial cells, fibroblasts,myofibroblasts and immune cells.Transcriptomic analyses revealed that transcriptional alterations across all cell types exhibited distinct properties rather than universally consistent. DGEs analysis demonstrated that genes related to extracellular matrix organization were highly expressed. Among these cell types, fibroblasts showed apparent heterogeneities. By performing pseudotime and single-cell entropy analysis on fibroblasts, we observed the age-associated decrease of entropy, and aged fibroblasts were found to adopt senescent secretory phenotype, as evidenced by the high expression of genes associated with the senescence-associated secretory phenotype (SASP). Since eliminating senescent cells or SASP were demonstrated to improve health and life span, we further investigated the distinct senescence-related gene expression signatures across all cell types during aging. Conclusions: We plotted a cellular atlas of penile corpus cavernosum, and revealed the molecular alterations of aging cells, especially fibroblasts. Our work will deepen the understanding of the heterogeneity among certain cell types during penile corpus cavernosum aging and provide novel entry points for the age-associated ED treatment.
Project description:The airways conduct gases to and from the gas-exchanging alveoli of the lung and are the site of age-related diseases, such as chronic obstructive pulmonary disease, asthma, and bronchogenic carcinoma. Here we set out to study the effects of aging on the cellular composition and gene expression of murine airway. We present a comprehensive single-cell RNA-sequencing atlas of tracheas from young (2 month) and aged (24 month) mice, comprising diverse populations of cells, including epithelial, endothelial, immune, fibroblast, and cartilage cells.