Project description:DCM:MeOH 2:1 extracts from deconstructed Atta texana fungus garden. Extracts were analyzed by LC-MS/MS performed in an UltiMate 3000 UPLC system (Thermo Scientific) using a Kinetex 1.7 mm C18 reversed phase UHPLC column (50 X 2.1 mm) and Maxis Q-TOF mass spectrometer (Bruker Daltonics) equipped with ESI source.
Project description:DCM:MeOH 2:1 extracts from deconstructed Atta texana fungus garden, maple leaves and ants' trash . Extracts were analyzed by LC-MS/MS performed in an UltiMate 3000 UPLC system (Thermo Scientific) using a Kinetex 1.7 mm C18 reversed phase UHPLC column (50 X 2.1 mm) and Maxis Q-TOF mass spectrometer (Bruker Daltonics) equipped with ESI source.
Project description:Many ant species grow fungus gardens that predigest food as an essential step of the ants' nutrient uptake. These symbiotic fungus gardens have long been studied and feature a gradient of increasing substrate degradation from top to bottom. To further facilitate the study of fungus gardens and enable the understanding of the predigestion process in more detail than currently known, we applied recent mass spectrometry-based approaches and generated a three-dimensional (3D) molecular map of an Atta texana fungus garden to reveal chemical modifications as plant substrates pass through it. The metabolomics approach presented in this study can be applied to study similar processes in natural environments to compare with lab-maintained ecosystems. IMPORTANCE The study of complex ecosystems requires an understanding of the chemical processes involving molecules from several sources. Some of the molecules present in fungus-growing ants' symbiotic system originate from plants. To facilitate the study of fungus gardens from a chemical perspective, we provide a molecular map of an Atta texana fungus garden to reveal chemical modifications as plant substrates pass through it. The metabolomics approach presented in this study can be applied to study similar processes in natural environments.
Project description:Vernal pools are unique in their isolation and the strong selection acting on their resident species. Vernal pool clam shrimp (Eulimnadia texana) are a promising model due to ease of culturing, short generation time, small genomes, and obligate desiccated diapaused eggs. Clam shrimp are also androdioecious (sexes include males and hermaphrodites), and here we use population-scaled recombination rates to support the hypothesis that the heterogametic sex is recombination free in these shrimp. We collected short-read sequence data from pooled samples from different vernal pools to gain insights into local adaptation. We identify genomic regions in which some populations have allele frequencies that differ significantly from the metapopulation. BayPass (Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555-1579.) detected 19 such genomic regions showing an excess of population subdivision. These regions on average are 550 bp in size and had 2.5 genes within 5 kb of them. Genes located near these regions are involved in Malpighian tubule function and osmoregulation, an essential function in vernal pools. It is likely that salinity profiles vary between pools and over time, and variants at these genes are adapted to local salinity conditions.