Project description:Biological nitrogen fixation (BNF) is an essential source of new nitrogen for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighbouring bacteria on N2 fixer activity remains limited. Here, we explored this question using a coculture of the free-living diazotroph Azotobacter vinelandii and the non-fixing plant growth-promoting rhizobacteria Bacillus subtilis. We assessed the interaction between the two bacteria under low N availability.
Project description:Alnus glutinosa belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in A. glutinosa. Symbiosis between A. glutinosa and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to study the role of the plant growth regulator auxin during actinorhizal symbiosis and to identify key plant genes that are involved in auxin signaling during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen (N2) which favors the induction of nitrogen fixing symbiosis. For auxin role study, plant were treated with 25µM 1-naphtoxy acetic acid (1-NOA) all along nodulation time. Nodule were harvested 3 weeks after inoculation. For this study we considered two stages: - 21 days old nodules obtained on plants not treated with 1-NOA (control condition) - 21 days old nodules obtained on plants supplemented with 25µM of 1-NOA. Three biological replicates were used for each condition, however due to non valid staistics, two of the replicates (one for control condition, one for treated condition were removed.
Project description:The bacterium, Sinorhizobium meliloti, interacts symbiotically with leguminous plants such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Medicago nodules are organized in structurally distinct tissue zones, representing different stages of bacterial and plant differentiation. We used laser-capture microdissection (LCM) to analyze bacterial and plant gene expression in four root nodule regions. In parallel, we analyzed gene expression in nodules formed by wild type bacteria on six plant mutants with nitrogen fixation deficiencies (dnf). We found that bacteroid metabolism is drastically remodeled during bacteroid differentiation. Many processes required for bacterial growth are down-regulated in the nitrogen fixation zone. The overall transcriptional changes are similar to those occurring during nutrient limitation by the stringent response. We also observed differential expression of bacterial genes involved in nitrogen fixation, cell envelope homeostasis, cell division, stress response and polyamine biosynthesis at distinct stages of nodule development. In M. truncatula we observed the differential regulation of several host processes that may trigger bacteroid differentiation and control bacterial infection. We analyzed plant and bacterial gene expression simultaneously, which allowed us to correlate processes in both organisms.
Project description:Arabidopsis thaliana 4-day-old seedlings were treated with the plant growth promoting rhizobacteria Caulobacter RHG1 or the neutral bacteria Bacillus sp. At 12 and 48 hours after treatment, roots were harvested, RNA was extracted and RNA-Seq data were generated. The goal of this experiment was to detect changes at the transcript level that were specific for the plant growth promoting rhizobacteria RHG1.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. They can also develop arbuscular mycorrhizae (AM) while associated with Glomeromycota fungi. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program in AM and to identify new key plant genes involved in endosymbioses.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition. Microarrays were designed by Imaxio (Clermont Ferrand, France ; http://www.imaxio.com/index.php) which has been accredited by Agilent Technologies (Palo Alto, CA, USA; http://www.home.agilent.com/agilent/home.jspx) as a certified service provider for microarray technologies. Based on 14327 annotated unigenes for C. glauca, 60mers probes were designed using eArray software (1 probe per unigene) and custom 8 x 15K Oligo Microarrays were manufactured by Agilent.
Project description:Alnus glutinosa belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in A. glutinosa. Symbiosis between A. glutinosa and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition. Microarrays were designed by Imaxio (Clermont Ferrand, France ; http://www.imaxio.com/index.php) which has been accredited by Agilent Technologies (Palo Alto, CA, USA; http://www.home.agilent.com/agilent/home.jspx) as a certified service provider for microarray technologies. Based on 14327 annotated unigenes for A. glutinosa, 60mers probes were designed using eArray software (1 probe per unigene) and custom 8 x 15K Oligo Microarrays were manufactured by Agilent
Project description:The secretion of metabolites by plant roots is a key determinant of microbial growth and colonisation. We have used Pisum sativum and its natural symbiont Rhizobium leguminosarum (it can form N2 fixing nodules on pea roots) to study the natural metabolites secreted by roots. To do this root secretion was harvested from pea plants grown under sterile conditions. This root exudate was then concentrated and used as a sole carbon and nitrogen source for growth of the bacteria in the laboratory. These bacteria were harvested in mid-exponential growth and RNA extracted for microarray analysis. As control cultures the bacteria were grown on 30 mM pyruvate as a carbon source and 10 mM ammonium chloride as a nitrogen source and RNA extracted. Two colour microarrays were performed using root exudate cultures versus pyruvate ammonia grown cultures. This was done in biological triplicate.