Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 16,015 nuclei in human adult testis. This dataset includes five samples from two different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:Unlike short interfering RNAs (siRNAs), which are commonly designed to repress a single messenger RNA (mRNA) target through perfect base pairing, microRNAs (miRNAs) are endogenous small RNAs that have evolved to concurrently repress multiple mRNA targets through imperfect complementarity. MicroRNA target recognition is primarily determined by pairing of the miRNA seed sequence (nucleotides 2–8) to complementary match sites in each mRNA target. Whereas siRNA technology is well established for single target knockdown, the design of artificial miRNAs for multi-target repression is largely unexplored. We designed and functionally analysed over 200 artificial miRNAs for simultaneous repression of pyruvate carboxylase and glutaminase by selecting all seed matches shared by their 3′ untranslated regions. Although we identified multiple miRNAs that repressed endogenous protein expression of both genes, seed-based artificial miRNA design was highly inefficient, as the majority of miRNAs with even perfect seed matches did not repress either target. Moreover, commonly used target prediction programs did not substantially discriminate effective artificial miRNAs from ineffective ones, indicating that current algorithms do not fully capture the features important for artificial miRNA targeting and are not yet sufficient for designing artificial miRNAs. Our analysis suggests that additional factors are strong determinants of the efficacy of miRNA-mediated target repression and remain to be discovered. 293T cells were transiently transfected with artificial miRNAs or non-targeting control (Allstars siRNA, Qiagen). Three replicate transfections were performed for each miRNA or control. Total RNA was extracted 48 hours after transfection.
Project description:microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate post-transcriptional silencing of target mRNAs. Despite their importance in many biological processes, rules governing AGO-miRNA targeting are only partially understood. We use a modified AGO HITS-CLIP strategy, termed CLEAR (Covalent Ligation of Endogenous Argonaute-bound RNAs) CLIP that enriches miRNAs ligated to their endogenous mRNA targets. CLEAR-CLIP mapped ~130,000 endogenous miRNA-target interactions in mouse brain and ~40,000 in human hepatoma cells. Motif and structural analysis define expanded pairing rules for over 200 mammalian miRNAs. Most interactions combine seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. At some regulatory sites, this specificity confers distinct silencing functions to miRNA family members with shared seed sequences but divergent 3’ ends. This work provides a means for explicit biochemical identification of miRNA sites in vivo, leading to the discovery that miRNA 3’ end pairing is a general determinant of AGO binding specificity.
Project description:microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate post-transcriptional silencing of target mRNAs. Despite their importance in many biological processes, rules governing AGO-miRNA targeting are only partially understood. We use a modified AGO HITS-CLIP strategy, termed CLEAR (Covalent Ligation of Endogenous Argonaute-bound RNAs) CLIP that enriches miRNAs ligated to their endogenous mRNA targets. CLEAR-CLIP mapped ~130,000 endogenous miRNA-target interactions in mouse brain and ~40,000 in human hepatoma cells. Motif and structural analysis define expanded pairing rules for over 200 mammalian miRNAs. Most interactions combine seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. At some regulatory sites, this specificity confers distinct silencing functions to miRNA family members with shared seed sequences but divergent 3’ ends. This work provides a means for explicit biochemical identification of miRNA sites in vivo, leading to the discovery that miRNA 3’ end pairing is a general determinant of AGO binding specificity.
Project description:Unlike short interfering RNAs (siRNAs), which are commonly designed to repress a single messenger RNA (mRNA) target through perfect base pairing, microRNAs (miRNAs) are endogenous small RNAs that have evolved to concurrently repress multiple mRNA targets through imperfect complementarity. MicroRNA target recognition is primarily determined by pairing of the miRNA seed sequence (nucleotides 2–8) to complementary match sites in each mRNA target. Whereas siRNA technology is well established for single target knockdown, the design of artificial miRNAs for multi-target repression is largely unexplored. We designed and functionally analysed over 200 artificial miRNAs for simultaneous repression of pyruvate carboxylase and glutaminase by selecting all seed matches shared by their 3′ untranslated regions. Although we identified multiple miRNAs that repressed endogenous protein expression of both genes, seed-based artificial miRNA design was highly inefficient, as the majority of miRNAs with even perfect seed matches did not repress either target. Moreover, commonly used target prediction programs did not substantially discriminate effective artificial miRNAs from ineffective ones, indicating that current algorithms do not fully capture the features important for artificial miRNA targeting and are not yet sufficient for designing artificial miRNAs. Our analysis suggests that additional factors are strong determinants of the efficacy of miRNA-mediated target repression and remain to be discovered.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.