Project description:As an essential micronutrient that is scarce in surface ocean waters, zinc (Zn) has the potential to limit oceanic photosynthetic productivity and influence the global carbon cycle. Here we observed Zn co-limitation with iron (Fe) in the natural phytoplankton community of Terra Nova Bay, Antarctica, induced by the drawdown of seawater CO2 and dZn during a bloom. Incubations amended with Zn resulted in significantly higher chlorophyll a content and greater macronutrient and dissolved inorganic carbon drawdown compared to Fe addition alone. Multiple Zn and Fe response proteins were observed in experimental and water column samples demonstrating co-stress in various algal taxa. Together these results demonstrate that Zn limitation can occur in productive Antarctic coastal ecosystems. Thus, Zn may be an important factor limiting the total productivity potential of marine phytoplankton.
Project description:Prymnesium parvum is regarded as one of the most notorious harmful algal bloom (HAB) species worldwide. In recent years, it has frequently formed toxic blooms in coastal and brackish waters of America, Europe, Australia, Africa and Asia, causing large-scale mortalities of wild and cultured fish and other gill-breathing animals. In the last decade, blooms of P. parvum have expanded to inland fresh waters in the USA, presumably due to changes in environmental conditions. The aim of the experiment was to establish the gill transcriptomic responses to P. parvum in rainbow trout. We used 2 different concentrations of P. parvum and identified fish with low and moderate responses to the algae. Based on the dose of and the fish response, fish were classified into 4 groups with high exposure/moderate response (HM), high exposure/low response (HL), low exposure/low response (LL) and control group (C) with no exposure/no response. Gene expression profiling of the gill tissue was performed using a microarray platform developed and validated for rainbow trout.
Project description:A custom multi-species microarray was used to study gene expression in wild hornyhead turbot (Pleuronichthys verticalis), collected from polluted and clean coastal waters in Southern California and in laboratory male zebrafish (Danio rerio) following exposure to estradiol and 4-nonylphenol. A multi-gene cross species microarray was fabricated as a diagnostic tool to screen the effects of environmental chemicals in fish, for which there is minimal genomic information. The microarray measurement of gene expression in zebrafish, which are phylogenetically distant from turbot, indicates that this multi-species microarray will be useful for measuring endocrine responses in Pleuronectiformes and other fish for which there is minimal genomic sequence information.
Project description:A custom multi-species microarray was used to study gene expression in wild hornyhead turbot (Pleuronichthys verticalis), collected from polluted and clean coastal waters in Southern California and in laboratory male zebrafish (Danio rerio) following exposure to estradiol and 4-nonylphenol. A multi-gene cross species microarray was fabricated as a diagnostic tool to screen the effects of environmental chemicals in fish, for which there is minimal genomic information. The microarray measurement of gene expression in zebrafish, which are phylogenetically distant from turbot, indicates that this multi-species microarray will be useful for measuring endocrine responses in Pleuronectiformes and other fish for which there is minimal genomic sequence information.
Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:The European clam, Ruditapes decussatus (Linnaeus, 1758) is a bivalve mollusc of the family Veneridae native to the European Atlantic and Mediterranean coastal waters. Its production is exclusively based on natural recruitment, which is subject to high annual fluctuations due to adversely affected by pollution and other environmental factors. Microarray analyses have been performed in four gonadal maturation stages of two higly productive Portuguese wild populations (Ria Formosa in South and Ria de Aveiro in North) characterized by different responses to spawning induction.
Project description:The Western Antarctic Peninsula (WAP) is among the areas of the planet showing some of the most significant increases in air and water temperature. It is projected that increasing temperature will modulate communities of coastal ecosystems at species ecological performance and molecular composition. The main way that the organisms can cope with large thermal variation is by having a reversible phenotypic plasticity, which provides the organisms with a compensatory physiological response when facing challenging conditions. However, since Antarctic organisms have evolved in a very cold and stable environment. The giant Antarctic isopod Glyptonotus antarcticus is one of the most abundant in Antarctic waters. This species has a larval development inside of maternal marsupium, where juveniles have a short period to acclimate to environmental conditions after birth. In this sense, we hypothesize that juveniles exposed to unusual temperature increases even for short periods, would not respond adequately showing a narrow phenotypic plasticity. We assessed if early juveniles of G. antarcticus have the molecular plasticity when exposed to increased temperature at 5¡C during 1, 6, 12, and 24 hours in comparison to control 0¡C. Sequenced HIseq2000 libraries were compared between control and each treatment to detect differentially expressed transcripts. The main molecular pathways affected by thermal stress were antioxidants, proteases, endopeptidases, and ubiquitination transcripts which were up-regulated, and mitochondrial respiratory chain, cuticle, cytoskeleton, and a molt transcript which were down-regulated. Considering HSP transcript, only 3 were up-regulated at least in two points of the stress kinetic, without classical HSP70 and HSP90 transcripts. This study shows that juveniles of G. antarcticus do not show molecular phenotypic plasticity to cope with acute short-term heat stress, even for one or few hours of exposure without an eco-physiological capacity to respond. This may have consequences at the ecological population level, showing a reduced individual ability to survive decreasing population recruitment.
Project description:Microarrays are useful tools for detecting and quantifying specific functional and phylogenetic genes in natural microbial communities. In order to track uncultivated microbial genotypes and their close relatives in an environmental context, we designed and implemented a “genome proxy” microarray that targets microbial genome fragments recovered directly from the environment. Fragments consisted of sequenced clones from large-insert genomic libraries from microbial communities in Monterey Bay, the Hawaii Ocean Time-series station ALOHA, and Antarctic coastal waters. In a prototype array, we designed probe sets to thirteen of the sequenced genome fragments and to genomic regions of the cultivated cyanobacterium Prochlorococcus MED4. Each probe set consisted of multiple 70-mers, each targeting an individual ORF, and distributed along each ~40-160kbp contiguous genomic region. The targeted organisms or clones, and close relatives, were hybridized to the array both as pure DNA mixtures and as additions of cells to a background of coastal seawater. This prototype array correctly identified the presence or absence of the target organisms and their relatives in laboratory mixes, with negligible cross-hybridization to organisms having ≤~75% genomic identity. In addition, the array correctly identified target cells added to a background of environmental DNA, with a limit of detection of ~0.1% of the community, corresponding to ~10^3 cells/ml in these samples. Signal correlated to cell concentration with an R2 of 1.0 across six orders of magnitude. In addition the array could track a related strain (at 86% genomic identity to that targeted) with a linearity of R2=0.9999 and a limit of detection of ~1% of the community. Closely related genotypes were distinguishable by differing hybridization patterns across each probe set. This array’s multiple-probe, “genome-proxy” approach and consequent ability to track both target genotypes and their close relatives is important for the array’s environmental application given the recent discoveries of considerable intra-population diversity within marine microbial communities. Keywords: target addition experiment, proof-of-concept for GPL6012