Project description:ABSTRACT: Background: Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Methodologies/Principle Findings: Using the newly characterized enhanced suberin1 (esb1) mutant, we established a connection in Arabidopsis thaliana between suberin in the root, and both water movement through the plant, and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates, and increased water use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn and Zn, and increases in the accumulation of Na, S, K, As, Se and Mo in the shoot. Conclusions/Significance: Here we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn and Zn occurs in the apoplast. Keywords: genomic hybridization bulked segregant analysis
Project description:Drought is one of the major factor that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants were grown in a greenhouse and drought stressed by withholding water for one week. Plants adapted to the decreasing water content of the substrate by adjustment of their osmotic potential in roots by accumulation of raffinose, glucose, galactinol and proline. In contrast in leaves levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves whereas the concentration of polyamines was reduced in roots. These polyamines are suggested to rather act as stress protectants than for osmotic adjustment. To understand the molecular basis of the response to this early drought stress better, four suppression subtractive hybridisation libraries from leaves and roots were constructed. Microarray technique was used to identify differentially expressed genes. A total of 109 unique ESTs were detected. The diversity of the putative functions of all identified genes confirms the complexity of the plant response to drought stress. Keywords: Transcription profiling
Project description:Drought is one of the major factor that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants were grown in a greenhouse and drought stressed by withholding water for one week. Plants adapted to the decreasing water content of the substrate by adjustment of their osmotic potential in roots by accumulation of raffinose, glucose, galactinol and proline. In contrast in leaves levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves whereas the concentration of polyamines was reduced in roots. These polyamines are suggested to rather act as stress protectants than for osmotic adjustment. To understand the molecular basis of the response to this early drought stress better, four suppression subtractive hybridisation libraries from leaves and roots were constructed. Microarray technique was used to identify differentially expressed genes. A total of 109 unique ESTs were detected. The diversity of the putative functions of all identified genes confirms the complexity of the plant response to drought stress. Keywords: Transcription profiling Two-condition experiment in roots and leaves, control leaves (CL) vs. drought-stressed leaves (DL) and control roots (CR) vs. drought-stressed roots (DR). Biological replicates: 4 control (1-4), drought-stressed (1-4), independently grown and harvested. One swap replicate per array.