Project description:Cryptococcus neoformans is a human fungal pathogen that is the causative agent of cryptococcosis and fatal meningitis in immuno-compromised hosts. Recent studies suggest that copper (Cu) acquisition plays an important role in C. neoformans virulence, as mutants that lack Cuf1, which activates the Ctr4 high affinity Cu importer, are hypo-virulent in mouse models. To understand the constellation of Cu-responsive genes in C. neoformans and how their expression might contribute to virulence, we determined the transcript profile of C. neoformans in response to elevated Cu or Cu deficiency. We identified two metallothionein genes (CMT1 and CMT2), encoding cysteine-rich Cu binding and detoxifying proteins, whose expression is dramatically elevated in response to excess Cu. We identified a new C. neoformans Cu transporter, CnCtr1, that is induced by Cu deficiency and is distinct from CnCtr4 and which shows significant phylogenetic relationship to Ctr1 from other fungi. Surprisingly, in contrast to other fungi, we found that induction of both CnCTR1 and CnCTR4 expression under Cu limitation, and CMT1 and CMT2 in response to Cu excess, are dependent on the CnCuf1 Cu metalloregulatory transcription factor. These studies set the stage for the evaluation of the specific Cuf1 target genes required for virulence in C. neoformans.
Project description:Comparison of transcriptional profiles of WT Cryptococcus neoformans (H99) and strain CM126 (pRPL2b-GAT201) which overexpresses the transcription factor GAT201 using a ribosomal protein promoter Keywords: Genetic modification WT vs. CM126 competitive hybridization. 4 biological replicates including 2 dye flips. Cultures grown at 37 degress Celsius in minimal (YNB) medium. Cultures independently grown and harvested during exponential growth.
Project description:We measured protein translation (by ribosome profiling) and RNA levels (by polyA-enriched RNA-seq) in Cryptococcus neoformans strain H99 and Cryptococcus neoformans strain JEC21. This is the first transcriptome-wide map of translation in this species complex.
Project description:The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird's droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.
Project description:Comparison of transcriptional profiles of WT Cryptococcus neoformans (H99) and strain CM126 (pRPL2b-GAT201) which overexpresses the transcription factor GAT201 using a ribosomal protein promoter Keywords: Genetic modification
Project description:Comparative transcriptome analysis of the CO2 sensing pathway via differential expressions of carbonic anhydrase in Cryptococcus neoformans