Project description:ALK fusion positive tumor constitutes a unique entitiy in lung adenocarcionmas. We compared the allelokaryotypes of ALK fusion positive and negative tumors with SNP array to get insight into the difference of genomic background of them. Copy number analysis with Affymetrix 250K SNP arrays of 35 ALK fusion positive and 95 ALK fusion negative lung adenocarcinomas was performed with annonymous references.
Project description:This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.
Project description:ALK fusion positive tumor constitutes a unique entitiy in lung adenocarcionmas. We compared the allelokaryotypes of ALK fusion positive and negative tumors with SNP array to get insight into the difference of genomic background of them.
Project description:Anaplastic lymphoma kinase (ALK) fusion variants in non-small-cell-lung cancer (NSCLC) consist of numerous dimerising fusion partners, with the most common being EML4. Clinical data suggests that the degree of treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs among the variant present in the patient tumor. Therefore, a better understanding the oncogenic signaling networks driven by different ALK-fusion variants is important. Here, we developed highly controlled doxycycline-inducible cell models bearing four different ALK fusion proteins, namely EML4-ALK-V1, EML4-ALK-V3, KIF5B-ALK, and TFG-ALK, in the context of non-tumorigenic NL20 human bronchial epithelial cells. These were complimented by patient-derived NSCLC cell lines harboring either EML4-ALK-V1 or EML4-ALK-V3 fusions. RNAseq and phosphoproteomics analysis were employed to identify dysregulated genes and hyper/hypo-phosphorylated proteins associated with ALK fusion expression. Among ALK fusion induced responses, we noted a robust inflammatory signature that included up-regulation of the Serpin B4 serine protease inhibitor in both NL20-inducible cell models and ALK-positive NSCLC patient-derived cell lines. We show that STAT3 is a major transcriptional regulator of SERPINB4 downstream of ALK fusions, along with NF-B and AP1. The upregulation of SERPINB4 promotes survival of ALK fusion expressing cells and inhibits natural killer (NK) cell-mediated cytotoxicity. In conclusion, our study reveals a novel ALK downstream survival axis that regulates Serpin B4 expression and identifies a molecular target that has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.
Project description:To characterize the effects of common ALK fusion genes, we performed a comprehensive RNA-Seq analysis of NL20 cells induced with ALK-EML4-V1, ALK-EML4-V3, ALK-TFG, ALK-KIF5B, using Doxycycline
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for ChIP-seq analysis.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for RNA-seq based gene expression profiling.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for small RNA-seq based miRNA expression profiling.
Project description:ALK fusions, such as the classic EML4-ALK, are known drivers of lung cancer and effective therapeutic targets. However, variant ALK fusions, including intergenic fusions like LOC388942-ALK (LA), have been detected in increasing numbers of patients, with their roles in tumorigenesis and ALK inhibitor resistance remaining unclear. Using CRISPR/Cas9, we generated the LA fusion in A549 and H441 cells, confirming elevated ALK expression via qRT-PCR and immunohistochemistry (IHC) staining. Functional analyses showed that LA significantly promoted tumor growth in vitro and in vivo while conferring increased resistance to alectinib. RNA-seq revealed upregulation of the FOS pathway in LA tumors, identifying FOS as a potential therapeutic target. Subsequently, we demonstrated that FOS disruption and inhibition sensitized LA tumors to treatment. RNA-seq profiling demonstrated that FOS depletion in LOC388942-ALK tumor significantly downregulated multiple oncogenic pathways related to cell cycle progression, DNA replication fidelity, and extracellular matrix remodeling, suggesting a pivotal role of FOS in maintaining tumor growth. These findings establish LOC388942-ALK as a novel oncogenic driver in lung cancer, highlighting its role in tumor growth and ALK inhibitor resistance. Targeting FOS may provide a promising therapeutic strategy for tumors harboring this intergenic fusion.
Project description:First line treatment for EML4-ALK fusion-positive lung cancer patient is the use of an ALK tyrosine kinase inhibitor (TKI), such as alectinib. While most patients initially respond to this therapy, many patients often develop relapse, and efficacious therapies for patients with relapse disease are limited. To study EML4-ALK fusion-positive lung cancer, novel murine lung cancer cell lines were generated from C57BL/6 mice using an intratracheally injected Adeno-virus that contains Cas9 and guide RNAs for the EML4-ALK translocation, which leads to the development of lung tumors. Cell lines were derived from these tumors. In an effort to better understand how cells respond to alectinib, we treated EML4-ALK-positive murine cell lines (EA1, EA2, and EA3 cells) in vitro for 1-7 days with either 100nM alectinib or DMSO-control. At each time point, RNA was isolated from each condition. RNA was submitted to RNA-seq. Differential analysis on the RNA-seq data was performed to determine and track gene changes over time between control and treated cells. These data will allow us to better develop novel therapeutics to use in conjunction with alectinib when treating EML4-ALK fusion-positive patients.