Project description:Streptococcus gordonii is a primary colonizer of the multispecies biofilm on tooth surfaces forming dental plaque, and a potential agent of endocarditis. The recent completion of the genome sequence of the naturally competent strain Challis allowed the design of a spotted oligonucleotide microarray to examine a genome-wide response of this organism to environmental signals. Based on temporal responses to synthetic competence signaling peptide (CSP) as indicated by transformation frequencies, the S. gordonii transcriptome was monitored at increments after CSP exposure. Microarray analysis identified 35 candidate early genes and 127 candidate late genes that were up-regulated at 5 and 15 minutes, respectively; these genes were often grouped in clusters. Findings supported published literature on the S. gordonii competence response, with up-regulation of most, but not all, genes that have been reported to affect this species' transformation frequencies. The CSP-induced transcriptomes of S. gordonii were compared to those of published S. pneumoniae strains. Both conserved and species-specific genes were identified. Putative intergenic regulatory sites such as the conserved combox sequence thought to be a binding site for competence sigma factor, were found preceding S. gordonii late responsive genes. In contrast, S. gordonii early CSP-responsive genes were not preceded by S. pneumoniae conserved direct repeats. These studies provide the first insights into a genome-wide transcriptional response of an oral commensal organism. They offer an extensive analysis of transcriptional changes that accompany competence in S. gordonii and form a basis for future intra- and inter-species comparative analyses of this ecologically important phenotype. Keywords: gene expression design
Project description:Transcriptome profiling of mid-log S. gordonii cells treated for 30 minutes with 1 µM of AFYWWFY heptamer dissolved in dimethyl sulfoxide (DMSO).
Project description:We have previously shown that responses of the oral bacterium Streptococcus gordonii to arginine are co-ordinated by three paralogous regulators: ArcR, ArgR and AhrC. This set of experiments was designed to assess the effects of the AhrC gene regulator on global gene expression in Streptococcus gordonii under high arginine or following a shift to no arginine.