Project description:Known to infect more than 600 plant species worldwide, Sclerotinia sclerotiorum is a necrotrophic fungal pathogen, and the causative agent of white mold. With recent infection reports documented across North America, Cannabis sativa is known to be susceptible to Sclerotinia infection. Resulting from legal constraints associated with C. sativa, little is known about the Cannabis-Sclerotinia pathosystem, particularly in how the plant responds to pathogen attack at the cellular and molecular levels. Anatomical study revealed initial infection and degradation of the epidermis and cortical parenchyma, followed by widespread infection of the vascular phloem. Dual RNA sequencing provided a detailed transcriptomic profile of this pathosystem directly at the site of infection. Differential gene expression analysis revealed large-scale transcriptional shifts resulting from rapid infection. We identified the upregulation of 97 genes at 1 day post inoculation (dpi) and 6733 genes 5 dpi in C. sativa, while 3186 genes were identified in S. sclerotiorum 7 dpi. Gene ontology term enrichment identified processes associated with plant defense and signal transduction cascades during C. sativa infection while processes associated with redox control and sugar catabolism were enriched in S. sclerotiorum. Taken together, this study revealed transcriptional reprogramming in both the host plant and fungal pathogen associated with degradation of host cortical and vascular phloem tissues.
Project description:Investigation of whole genome gene expression level changes in Pichia stipitis CBS 6054 grown aerobically in xylose, compared to the same strain grown aerobically in glucose.
Project description:To reveal the role of sulfur metabolism genes in memory formation processes, transcriptome libraries were obtained from the heads of 5-day-old naive males. The libraries were generated from Drosophila strains created in our laboratory with deleted cbs genes ( CBS-/-(5) and CBS-/-(8), cse (CSE-/-) and strains with double deletion of cbs and cse genes (CBS-/-,CSE-/-(1) and (CBS-/-,CSE-/-(2). Strain 58492, in which deletions were introduced by the CRISP/CAS9 method, was used as a control strain.
Project description:Investigation of whole genome gene expression level changes in Pichia stipitis CBS 6054 grown aerobically in xylose, compared to the same strain grown aerobically in glucose. A six array study using total RNA recovered from three separate cultures of Pichia stipitis CBS 6054 grown in glucose and three separate cultures of Pichia stipitis CBS 6054 grown in xylose. Each array measures the expression level of 374,100 probes (average probe length 53.6 +/- 4.1 nt) tiled across the Pichia stipitis CBS 6054 genome with a median spacing distance of 33 nt. During data processing, probes are filtered to include only those probes corresponding to annotated protein-coding genes.