Project description:Individual phenotypic differences persist even in genetically identical individuals, although separating genetic and environmental causation is difficult or impossible in most organisms. To understand the basis of individual differences in the absence of genetic differences, we measured two quantitative reproductive traits in genetically identical young adult Caenorhabditis elegans roundworms in a shared environment and performed single-individual mRNA-seq on each worm. We identified hundreds of genes for which expression variation was strongly associated with reproductive traits, some of which depended on prior environmental experience and some of which was random. Multiple small sets of genes together were highly predictive of reproductive traits across individuals.
Project description:Genetically identical inbred mice exhibit substantial stable individual variability in exploratory behavior. We used microarrays to look at gene expression differences in the hippocampus in female mice separated by stable differences in exploratory behavior
Project description:Comparison of female and male Daphnia magna gene expression with age. The sexes in Daphnia magna are genetically identical. The aim of this study was to identify possible differences in gene expression between genders with age.
Project description:Genetically identical inbred mice exhibit substantial stable individual variability in exploratory behavior. We used microarrays to look at gene expression differences in the hippocampus in female mice separated by stable differences in exploratory behavior Experiment Overall Design: Balb c/J offspring were briefly separated from mothers for 15 minutes each morning on postnatal days 1-14 (handled group) or left undisturbed. At 8 weeks of age mice were tested in the open-field and light-dark behavioral paradigms to verify a handling-induced behavioral phenotype. 2 weeks after behavioral testing, animals were sacrificed and the CA1 region was microdissected. CA1 regions were stored at -20C in RNA later. RNA was extracted from 8 samples (4 handled and 4 non-handled) using Trizol. RNA was extracted from second group of animals (7 handled and 10 non-handled) using Qiagen RNA/DNA columns. All total RNA samples were double round amplied and labeled using standard Affymetrix protocols and hybridized to Mouse 430_2.0 arrays in parallel.
Project description:Background Daphnia species reproduce by cyclic parthenogenesis involving both sexual and asexual reproduction. The sex of the offspring is environmentally determined and mediated via endocrine signalling by the mother. Interestingly, male and female Daphnia can be genetically identical, yet display large differences in behaviour, morphology, lifespan and metabolic activity. Our goal was to integrate multiple omics datasets, including gene expression, splicing, histone modification and DNA methylation data generated from genetically identical female and male Daphnia pulex under controlled laboratory settings with the aim of achieving a better understanding of the underlying epigenetic factors that may contribute to the phenotypic differences observed between the two genders. Results In this study we demonstrate that gene expression level is positively correlated with increased DNA methylation, and histone H3 trimethylation at lysine 4 (H3K4me3) at predicted promoter regions. Conversely, elevated histone H3 trimethylation at lysine 27 (H3K27me3), distributed across the entire transcript length, is negatively correlated with gene expression level. Interestingly, male Daphnia are dominated with epigenetic modifications that globally promote elevated gene expression, while female Daphnia are dominated with epigenetic modifications that reduce gene expression globally. For examples, CpG methylation (positively correlated with gene expression level) is significantly higher in almost all differentially methylated sites in male compared to female Daphnia. Furthermore, H3K4me3 modifications are higher in male compared to female Daphnia in more than 3/4 of the differentially regulated promoters. On the other hand, H3K27me3 is higher in female compared to male Daphnia in more than 5/6 of differentially modified sites. However, both sexes demonstrate roughly equal number of genes that are up-regulated in one gender compared to the other sex. Since, gene expression analyses typically assume that most genes are expressed at equal level among samples and different conditions, and thus cannot detect global changes affecting most genes. Conclusions The epigenetic differences between male and female in Daphnia pulex are vast and dominated by changes that promote elevated gene expression in male Daphnia. Furthermore, the differences observed in both gene expression changes and epigenetic modifications between the genders relate to pathways that are physiologically relevant to the observed phenotypic differences.
Project description:Comprehensive list of SUMO targets from the nematode Caenorhabditis elegans. SUMO conjugates isolated from transgenic worms carrying 8His and GFP tagged SUMO. The constructs rescues the lethal knock-out of a single SUMO gene, smo-1. SUMO conjugates where isolated from heat shock, arsenite exposure, and UV treated SUMO-GFP worms as well as from control non treated animals. In parallel identical purification procedure was performed with non-transgenic worms and proteins identified with this control where excluded.
Project description:Bacteria respond to changes in their environment with specific transcriptional programmes, but even within genetically identical populations these programmes are not homogenously expressed. Such transcriptional heterogeneity between individual bacteria allows genetically clonal communities to develop a complex array of phenotypes, examples of which include persisters that resist antibiotic treatment and metabolically specialized cells that emerge under nutrient-limiting conditions. Fluorescent reporter constructs have played a pivotal role in deciphering heterogeneous gene expression within bacterial populations but have been limited to recording the activity of single genes in a few genetically tractable model species, whereas the vast majority of bacteria remain difficult to engineer and/or even to cultivate. Single-cell transcriptomics is revolutionizing the analysis of phenotypic cell-to-cell variation in eukaryotes, but technical hurdles have prevented its robust application to prokaryotes. Here, using the improved poly(A)-independent single-cell RNA-sequencing protocol MATQ-seq, we report the faithful capture of growth-dependent gene expression patterns in individual Salmonella and Pseudomonas bacteria across all RNA classes and genomic regions. These transcriptomes provide important reference points for single-cell RNA-sequencing of other bacterial species, mixed microbial communities and host–pathogen interactions.