ABSTRACT: Boosting anaerobic digestion of long chain fatty acid with microbial electrolysis cell combining organic framework as cathode: biofilm construction and metabolic pathways
Project description:Performance and mechanisms of psychrophilic anaerobic digestion assisted by microbial electrolysis cell with metal organic framework cathode
| PRJNA928238 | ENA
Project description:Performance and mechanisms of psychrophilic anaerobic digestion assisted by microbial electrolysis cell with metal organic framework cathode Edit
| PRJNA933386 | ENA
Project description:Bio-cathode in microbial electrolysis cell
Project description:Enhancing Microbial Electrosynthesis of Medium Chain Fatty Acids from Carbon Dioxide by Combining Bioaugmentation and Fe-Sn Oxide Cathode Coating
Project description:Microbial physiology plays a pivotal role in construction of a superior microbial cell factory for efficient production of desired products. Here we identified pcnB repression through genome-scale CRISPRi modulation combining fluorescence-activated cell sorting (FACS) and next-generation sequencing (NGS), which confers improved physiology for free fatty acids (FFAs) overproduction in Escherichia coli. The repression of pcnB could improve the stability and abundance of the transcripts involved in proton-consuming system, conferring a global improvement on cell membrane, redox state, and energy level. These physiological advantages facilitated further identification of acrD repression enhancing FFAs efflux. The engineered strain pcnBi-acrDi-fadR+ achieved 35.1 g l−1 FFAs production in fed-batch fermentation, which is the maximum titer in E. coli reported to date. This study underscores the significance of hidden genetic determinants in microbial biosynthesis and sheds light on the role of microbial physiologies in boosting microbial biosynthesis.
Project description:Microbial physiology plays a pivotal role in construction of a superior microbial cell factory for efficient production of desired products. Here we identified pcnB repression through genome-scale CRISPRi modulation combining fluorescence-activated cell sorting (FACS) and next-generation sequencing (NGS), which confers improved physiology for free fatty acids (FFAs) overproduction in Escherichia coli. The repression of pcnB could improve the stability and abundance of the transcripts involved in proton-consuming system, conferring a global improvement on cell membrane, redox state, and energy level. These physiological advantages facilitated further identification of acrD repression enhancing FFAs efflux. The engineered strain pcnBi-acrDi-fadR+ achieved 35.1 g l−1 FFAs production in fed-batch fermentation, which is the maximum titer in E. coli reported to date. This study underscores the significance of hidden genetic determinants in microbial biosynthesis and sheds light on the role of microbial physiologies in boosting microbial biosynthesis.
Project description:LCMS data from 3NPH derivatized fecal extracts of gnotobiotic mice, generated for interlaboratory comparison of a targeted method for short chain fatty acids and organic acids quantitation.
Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.