Project description:Mature messenger RNAs (mRNAs) consist of coding sequence (CDS) and 5’ and 3’ untranslated regions, typically expected to show similar abundance within a given neuron. Examining mRNA from defined neurons we unexpectedly show extremely common unbalanced expression of cognate 3’ UTR and CDS sequences, observing many genes with high UTR relative to CDS, and others with high CDS to UTR. By in situ hybridization 19 of 19 genes examined show a broad range of UTR to CDS expression ratios in different neurons and other tissues. These ratios may be spatially graded or change with developmental age, but are consistent across animals. Further, for two genes examined, a UTR to CDS ratio above a particular threshold in any given neuron correlated with reduced or undetectable protein expression. Our findings raise questions about the role of isolated UTR sequences in regulation of protein expression, and highlight the importance of separately examining UTR and CDS sequences in gene expression analyses.
Project description:Marigold (Tagetes erecta L.) is an important ornamental plant with a wide variety of colors. Despite its economic value, there are few biochemical and molecular basic studies of flower color in marigold. To study the mechanism behind its color formation, metabolomics analysis and de novo cDNA sequencing was performed on marigold inbred line ‘V-01’ and its petal color mutant ‘V-01M’, in four flower developmental stages.
Project description:Petal is not only the target of selection by horticulturalists to enhance the ornamental value of plants but also emerged as a unique model system for plant organogenesis studies. It is known that three major groups of pigments, betalains, carotenoids and anthocyanins, are responsible for the attractive natural display of flower colors. While carotenoids and betalains generally yield yellow or red colors, anthocyanins confer a diverse range of color from orange to red to violet and blue. In this study, we collected 11 species (Erysimum cheiri, Malcolmia maritime, Brassica oleracea, Raphanus sativus, Orychophragmus violaceus, Eruca sativa, Orychophragmus violaceus, Iberis amara, Aubrieta x cultorum, Lobularia maritime, Matthiola incana) belong to different tribe in Brassicaceae family with varied flower color and performed petal transcriptome analysis. de novo transcriptome assembly showed that average length of the contigs varied from 631bp in O. violaceus to 1212bp in Matthiola incana which indicated that the complexity of the genomes are different much. Protein homology between these species and those sequenced species in Brassicaceae family are consistent with the known phylogenetic relationships. However, O. violaceus has closer relationships with Sisymbrium irio than expected Brassica species. Clustering analysis of genes in anthocyanin and carotenoids synthesis pathway indicated that while silence or low expression of CCD4 (Carotenoid Cleavage Dioxygenase 4) leading to the yellow color formation in different species, purple or red color variation might result from different genes expression variation. These results not only provide transcriptome data for petal development study but also provide useful information for Brassica flower improvement for ornamental purpose.
2017-01-24 | GSE93879 | GEO
Project description:Transcriptomes of different flower colors of Cymbidium eburneum and Cymbidium insigne Rolfe
| PRJNA1338804 | ENA
Project description:Transcriptome analysis of differences between corolla of Nicotiana alata in different flower colors
Project description:Cadmium sulfide quantum dots (CdS QDs) are widely used in novel equipment. The relevance of the research lies in the need to develop risk assessments for nanomaterials, using as basis a model plant species. Here a screen of Arabidopsis thaliana mutant lines was performed in an attempt to identify plants tolerant to CdS QDs. Two tolerant Ds insertion mutant lines (atnp01 and atnp02) were identified. A whole-genome microarray experiment showed how genes were regulated by CdS QDs. Most of the genes involved in the response to CdS QDs were related to detoxification and general metabolism. The two mutant lines treated with CdS QDs showed different patterns of gene expression.