Project description:Here is reported the first study of transcriptome analyses using the Illumina HiSeq 4000 platform for three kinds of wheat (G represents Strong gluten wheat, Z represents middle gluten wheat,R represents weak gluten wheat). The variation of wheat varieties with different gluten content is mainly shown in the content of gluten, flour is divided into high gluten powder ( > 30%), medium gluten powder (26%-30%) and low gluten powder ( < 20%), according to the wet gluten content. In total, over 102.6 Gb clean reads were produced and 114, 621 unigenes were assembled; more than 59,085 unigenes had at least one significant match to an existing gene model. Differentially expressed gene analysis identified 2339 and 2600 unigenes which were expressed higher or lower among strong gluten, middle gluten and weak gluten wheat. After functional annotation and classification, three dominant pathways including protein isomerase, antioxidase activity and energy metabolism, and 410 unigenes related to gluten strength polymerization of wheat were discovered. In strong-gluten wheat, low molecular weight subunit content is higher than weak-gluten wheat, and the activity of cysteine synthase and isomerase is increased, which may promote the cross-linking of low molecular weight protein to high molecular weight protein. Meanwhile, POD enzyme strengthens gluten network and CAT enzyme affects gluten polymerization, along with higher ATPase activity, which will provides energy for protein polymerization reaction in comparison of strong-gluten wheat and weak-gluten wheat. The accuracy of these RNA-seq data was validated by qRT-PCR analysis. These data will extend our knowledge of quality characteristics of wheat and provide a theoretical foundation for molecular mechanism research of wheat.
Project description:Purpose: To characterize the functional implication of autophagy in the wheat response to stress, the key genes contributing in mediated salt tolerance of wheat seedlings through 3-MA were identified in normal or salt stress conditions in the presence or absence of added 3-MA by the transcriptome profiles. Methods: Four days after NaCl and 3-MA treatment, the roots and the third leaves were collected respectively with every 10 of them being mixed as one biological replicate for each treatment. Every treatment had four biological replicates. The wheat root and leaves mRNA profiles were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results: The RNA-Seq data had high quality and reliable results were obtained from the transcriptome assembly. A high correlation between biological replicates was observed for all treatments, which indicated that the four biological replicates were reliable in this study. Based on the principal component analysis (PCA), a clear separation between the NaCl-treated group and controls could be observed. The Q30 percentage (sequences with sequencing error rate lower than 0.1%) was over 94%, and the average GC content of the RNA-seq reads was 55.46%. After removing the adaptor and low-quality sequence, each library received 68310810-83844286 clean reads. These clean reads were mapped to the reference genome with match ratios in the range of 93.6%-95.9%, and 120744 genes predicted from the genome were found to be expressed (with FPKM > 0), including 25180 annotated genes in wheat genome. 3-MA treatment shifted the transcriptome a salt-stressed wheat seedling. The up-regulated DEGs and DEMs were increased, and the down-regulated DEGs and DEMs were decreased in 3-MA-added plants under NaCl stress condition. The study may help us understand the mechanism for 3-MA mediated salt tolerance and provide a theoretical basis for autophagy regulated salt response in wheat seedlings. Conclusions: 3-MA treatment shifted the transcriptome a salt-stressed wheat seedling. The up-regulated DEGs and DEMs were increased, and the down-regulated DEGs and DEMs were decreased in 3-MA-added plants under NaCl stress condition. The study may help us understand the mechanism for 3-MA mediated salt tolerance and provide a theoretical basis for autophagy regulated salt response in wheat seedlings.
2021-12-15 | GSE166260 | GEO
Project description:Clean data of Cordia dichotoma