Project description:Pseudomonas sp. strain JMM was isolated from the sediments of a natural water reservoir (pH, 6 to 7) located at Chambyal village in Samba district of Jammu and Kashmir, India. Here we report the annotated draft genome sequence of strain JMM having 52 contigs with 5,884 genes and an average G+C content of 66.5%.
Project description:Nitropropionic acid (NPA) is a widely distributed naturally occurring nitroaliphatic toxin produced by leguminous plants and fungi. The Southern green shield bug feeds on leguminous plants and shows no symptoms of intoxication. Likewise, its gut-associated microorganisms are subjected to high levels of this toxic compound. In this study, we isolated a bacterium from this insect's gut system, classified as Pseudomonas sp. strain Nvir, that was highly resistant to NPA and was fully degrading it to inorganic nitrogen compounds and carbon dioxide. In order to understand the metabolic fate of NPA, we traced the fate of all atoms of the NPA molecule using isotope tracing experiments with [15N]NPA and [1-13C]NPA, in addition to experiments with uniformly 13C-labeled biomass that was used to follow the incorporation of 12C atoms from [U-12C]NPA into tricarboxylic acid cycle intermediates. With the help of genomics and transcriptomics, we uncovered the isolate's NPA degradation pathway, which involves a putative propionate-3-nitronate monooxygenase responsible for the first step of NPA degradation. The discovered protein shares only 32% sequence identity with previously described propionate-3-nitronate monooxygenases. Finally, we advocate that NPA-degrading bacteria might find application in biotechnology, and their unique enzymes might be used in biosynthesis, bioremediation, and in dealing with postharvest NPA contamination in economically important products. IMPORTANCE Plants have evolved sophisticated chemical defense mechanisms, such as the production of plant toxins in order to deter herbivores. One example of such a plant toxin is nitropropionic acid (NPA), which is produced by leguminous plants and also by certain fungi. In this project, we have isolated a bacterium from the intestinal tract of a pest insect, the Southern green shield bug, that is able to degrade NPA. Through a multiomics approach, we identified the respective metabolic pathway and determined the metabolic fate of all atoms of the NPA molecule. In addition, we provide a new genetic marker that can be used for genome mining toward NPA degradation. The discovery of degradation pathways of plant toxins by environmental bacteria opens new possibilities for pretreatment of contaminated food and feed sources and characterization of understudied enzymes allows their broad application in biotechnology.
Project description:Here, we report the genome sequence of Pseudomonas sp. strain MM213, isolated from brookside soil in Bielefeld, Germany. The genome is complete and consists of 6,746,355 bp, with a GC content of 59.4% and 6,145 predicted protein-coding sequences. Pseudomonas sp. strain MM213 is part of the Pseudomonas mandelii group.
Project description:Pseudomonas sp. strain phDV1 is a Gram-negative bacterium capable of degrading aromatic hydrocarbons. Here, we present the complete genome sequence of this strain, which consists of 4,727,682 bp, with a 62.3% G+C content and 4,574 genes. Multiple genes responsible for the degradation of aromatics are present in this strain.
Project description:Pseudomonas sp. strain M18, an effective biological control agent isolated from the melon rhizosphere, has a genetic background similar to that of the opportunistic human pathogen Pseudomonas aeruginosa PAO1. However, the predominant phenazine produced by strain M18 is phenazine-1-carboxylic acid (PCA) rather than pyocyanin (PYO); the quantitative ratio of PCA to PYO is 105 to 1 at 28 degrees C in strain M18, while the ratio is 1 to 2 at 37 degrees C in strain PAO1. We first provided evidence that the differential production of the two phenazines in strains M18 and PAO1 is related to the temperature-dependent and strain-specific expression patterns of phzM, a gene involved in the conversion of PCA to PYO. Transcriptional levels of phzM were measured by quantitative real-time PCR, and the activities of both transcriptional and translational phzM'-'lacZ fusions were determined in strains M18 and PAO1, respectively. Using lasI::Gm and ptsP::Gm inactivation M18 mutants, we further show that expression of the phzM gene is positively regulated by the quorum-sensing protein LasI and negatively regulated by the phosphoenolpyruvate phosphotransferase protein PtsP. Surprisingly, the lasI and ptsP regulatory genes were also expressed in a temperature-dependent and strain-specific manner. The differential production of the phenazines PCA and PYO by strains M18 and PAO1 may be a consequence of selective pressure imposed on P. aeruginosa PAO1 and its relative M18 in the two different niches over a long evolutionary process.
Project description:Here, we present the 3.53-Mb genome for Alcaligenaceae sp. strain 429, isolated from a patient with unknown etiology. While the 16S rRNA gene most closely resembles Paenalcaligenes species, average amino acid identity (AAI) analysis did not meet the threshold to classify our strain as a species of this family.
Project description:We report here the complete genome sequences of four atrazine-degrading bacteria. Their genomes will serve as references for determining the genetic changes that have occurred during an evolution experiment.
Project description:We report the complete genome sequence of Pseudomonas putida strain H8234, which was isolated from a hospital patient presenting with bacteremia. This strain has a single chromosome (6,870,827 bp) that contains 6,305 open reading frames. The strain is not a pathogen but exhibits multidrug resistance associated with 40 genomic islands.
Project description:Bacterial iodate (IO(3)(-)) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 microM iodate to iodide (I(-)) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 microM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg(-1)), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg(-1)). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.
Project description:We have previously reported that a psychrotrophic bacterium, Pseudomonas sp. strain KB700A, which displays sigmoidal growth even at -5 degrees C, produced a lipase. A genomic DNA library of strain KB700A was introduced into Escherichia coli TG1, and screening on tributyrin-containing agar plates led to the isolation of the lipase gene. Sequence analysis revealed an open reading frame (KB-lip) consisting of 1,422 nucleotides that encoded a protein (KB-Lip) of 474 amino acids with a molecular mass of 49,924 Da. KB-Lip showed 90% identity with the lipase from Pseudomonas fluorescens and was found to be a member of Subfamily I.3 lipase. Gene expression and purification of the recombinant protein were performed. KB-Lip displayed high lipase activity in the presence of Ca2+. Addition of EDTA completely abolished lipase activity, indicating that KB-Lip was a Ca2+-dependent lipase. Addition of Mn2+ and Sr2+ also led to enhancement of lipase activity but to a much lower extent than that produced by Ca2+. The optimal pH of KB-Lip was 8 to 8.5. The addition of detergents enhanced the enzyme activity. When p-nitrophenyl esters and triglyceride substrates of various chain-lengths were examined, the lipase displayed highest activity towards C10 acyl groups. We also determined the positional specificity and found that the activity was 20-fold higher toward the 1(3) position than toward the 2 position. The optimal temperature for KB-Lip was 35 degrees C, lower than that for any previously reported Subfamily I.3 lipase. The enzyme was also thermolabile compared to these lipases. Furthermore, KB-Lip displayed higher levels of activity at low temperatures than did other enzymes from Subfamily I.3, indicating that KB-Lip has evolved to function in cold environments, in accordance with the temperature range for growth of its psychrotrophic host, strain KB700A.