Project description:Transcription profiling by array of normal pancreas, primary pancreatic ductal adenocarcinoma (PDAC), normal liver, and pancreatic liver metastases using the Affymetrix HG-U133B array
Project description:Transcription profiling by array of normal pancreas, primary pancreatic ductal adenocarcinoma (PDAC), normal liver, and pancreatic liver metastases using the Affymetrix HG-U133A array
Project description:RNA-SEQ analysis of KMC murine pancreatic ductal adenocarcinoma (PDAC) cell line upon siRNA depletion of MYC, KRas or Miz1 (aka Zbtb17)
Project description:Transcription profiling by 3'-end sequencing of whole blood from pancreatic ductal adenocarcinoma (PDAC) patients and healthy controls for PDAC diagnosis
Project description:Background/Aims: Microarray-based comparative genomic hybridisation (CGH) has allowed high-resolution analysis of DNA copy number alterations across the entire cancer genome. Recent advances in bioinformatics tools enable us to perform a robust and highly sensitive analysis of array CGH data and facilitate the discovery of novel cancer-related genes. Methods: We analysed a total of 29 pancreatic ductal adenocarcinoma (PDAC) samples (six cell lines and 23 microdissected tissue specimens) using 1 Mb-spaced CGH arrays. The transcript levels of all genes within the identified regions of genetic alterations were then screened using our Pancreatic Expression Database. Results: In addition to 238 high-level amplifications and 35 homozygous deletions, we identified 315 minimal common regions of “non-random” genetic alterations (115 gains and 200 losses) which were consistently observed across our tumour samples. The small size of these aberrations (median size of 880 kb) contributed to the reduced number of candidate genes included (on average 12 Ensembl-annotated genes). The database has further specified the genes whose expression levels are consistent with their copy number status. Such genes were UQCRB, SQLE, DDEF1, SLA, ERICH1 and DLC1, indicating that these may be potential target candidates within regions of aberrations. Conclusion: This study has revealed multiple novel regions that may indicate the locations of oncogenes or tumour suppressor genes in PDAC. Using the database, we provide a list of novel target genes whose altered DNA copy numbers could lead to significant changes in transcript levels in PDAC. (Harada et al. Pancreatology) Keywords: pancreatic ductal adenocarcinima, tissue microdissection, array CGH, genetic alterations A panel of 23 microdissected PDAC tissues and 6 PDAC-derived cell lines were analysed using Sanger's CGH arrays with 1 Mb resolution. Clinical info of the samples used is provided as a supplementary file.
Project description:Background/Aims: Microarray-based comparative genomic hybridisation (CGH) has allowed high-resolution analysis of DNA copy number alterations across the entire cancer genome. Recent advances in bioinformatics tools enable us to perform a robust and highly sensitive analysis of array CGH data and facilitate the discovery of novel cancer-related genes. Methods: We analysed a total of 29 pancreatic ductal adenocarcinoma (PDAC) samples (six cell lines and 23 microdissected tissue specimens) using 1 Mb-spaced CGH arrays. The transcript levels of all genes within the identified regions of genetic alterations were then screened using our Pancreatic Expression Database. Results: In addition to 238 high-level amplifications and 35 homozygous deletions, we identified 315 minimal common regions of “non-random” genetic alterations (115 gains and 200 losses) which were consistently observed across our tumour samples. The small size of these aberrations (median size of 880 kb) contributed to the reduced number of candidate genes included (on average 12 Ensembl-annotated genes). The database has further specified the genes whose expression levels are consistent with their copy number status. Such genes were UQCRB, SQLE, DDEF1, SLA, ERICH1 and DLC1, indicating that these may be potential target candidates within regions of aberrations. Conclusion: This study has revealed multiple novel regions that may indicate the locations of oncogenes or tumour suppressor genes in PDAC. Using the database, we provide a list of novel target genes whose altered DNA copy numbers could lead to significant changes in transcript levels in PDAC. (Harada et al. Pancreatology) Keywords: pancreatic ductal adenocarcinima, tissue microdissection, array CGH, genetic alterations
Project description:To further development of our lncRNA and mRNA expression approach to pancreatic ductal adenocarcinoma(PDAC), we have employed lncRNA and mRNA microarray expression profiling as a discovery platform to identify lncRNA and mRNA expression in pancreatic ductal adenocarcinoma.Human pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from PDAC donors and other duodenum diseases donors. analyze mRNA and lncRNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform
Project description:To explore the potential involvement of circular RNAs (circRNAs) in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted circRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of circRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology. Analyze circular RNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform.
Project description:Genome wide DNA methylation profiling of pancreatic ductal adenocarcinoma (PDAC) and non-tumoral pancreatic samples (PT). The Illumina Infinium450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles in tissue samples. Samples included 6 PDAC and 9 PT.