Project description:This study detected and characterized enteric pathogens (Salmonella, Shigella, E.coli and Vibrio cholerae) from an urban river in Johannesburg South Africa
| PRJEB82489 | ENA
Project description:Molecular characterization of Escherichia coli collected from an urban river in Johannesburg South Africa
Project description:Antibiotic resistance (AR) is the resistance mechanism pattern in bacteria that evolves over some time, thus protecting the bacteria against antibiotics. AR is due to bacterial evolution to make itself fit to changing environmental conditions in a quest for survival of the fittest. AR has emerged due to the misuse and overuse of antimicrobial drugs, and few antibiotics are now left to deal with these superbug infections. To combat AR, vaccination is an effective method, used either therapeutically or prophylactically. In the current study, an in silico approach was applied for the design of multi-epitope-based vaccines against Providencia rettgeri, a major cause of traveler's diarrhea. A total of six proteins: fimbrial protein, flagellar hook protein (FlgE), flagellar basal body L-ring protein (FlgH), flagellar hook-basal body complex protein (FliE), flagellar basal body P-ring formation protein (FlgA), and Gram-negative pili assembly chaperone domain proteins, were considered as vaccine targets and were utilized for B- and T-cell epitope prediction. The predicted epitopes were assessed for allergenicity, antigenicity, virulence, toxicity, and solubility. Moreover, filtered epitopes were utilized in multi-epitope vaccine construction. The predicted epitopes were joined with each other through specific GPGPG linkers and were joined with cholera toxin B subunit adjuvant via another EAAAK linker in order to enhance the efficacy of the designed vaccine. Docking studies of the designed vaccine construct were performed with MHC-I (PDB ID: 1I1Y), MHC-II (1KG0), and TLR-4 (4G8A). Findings of the docking study were validated through molecular dynamic simulations, which confirmed that the designed vaccine showed strong interactions with the immune receptors, and that the epitopes were exposed to the host immune system for proper recognition and processing. Additionally, binding free energies were estimated, which highlighted both electrostatic energy and van der Waals forces to make the complexes stable. Briefly, findings of the current study are promising and may help experimental vaccinologists to formulate a novel multi-epitope vaccine against P. rettgeri.
Project description:Providencia rettgeri is a common insect-associated Gram-negative bacterium. Here, we present the draft genome sequence of P. rettgeri NVIT03, the most common bacterial symbiont of the insect hymenopteran model Nasonia vitripennis. This symbiont is also part of the Sarcophaga bullata pupal microbiome that Nasonia spp. parasitize and that critically influences the development of the wasp.
Project description:OBJECTIVES:A carbapenem-resistant Providencia rettgeri (PR1) isolate was recovered from a wound infection in Missouri, USA. This isolate possessed an EDTA-inhibitable carbapenemase that was unidentified using the Xpert CARBA-R assay. Our objective was to elucidate the molecular determinant of carbapenem resistance in this isolate. We then sought to test the transmissibility of blaIMP-27 loci in clinical P. rettgeri and Proteus mirabilis isolates. METHODS:In October 2016 the novel ambler Class B carbapenemase blaIMP-27, was reported in two different Proteus mirabilis (PM185 and PM187) isolates. Broth mating assays for transfer of carbapenemase activity were performed for the three clinical isolates with recipient sodium azide-resistant Escherichia coli J53. Antibiotic susceptibility testing and phenotypic carbapenemase activity testing were performed on the clinical isolates, J53 and transconjugants using the Kirby-Bauer disc diffusion method according to CLSI guidelines. Plasmid DNA from PM187, PR1 and their transconjugants were used as input for Nextera Illumina sequencing libraries and sequenced on a NextSeq platform. RESULTS:PR1 was resistant to both imipenem and meropenem. PM187 and PR1 could transfer resistance to E. coli through plasmid conjugation (pPM187 and pPR1). pPM187 had a virB/virD4 type IV secretion system whereas pPR1 had a traB/traD type IV secretion system. CONCLUSION:Two of three blaIMP-27-bearing clinical isolates tested could conjugate resistance into E. coli. The resulting transconjugants became positive for phenotypic carbapenemase production but did not pass clinical resistance breakpoints. blaIMP-27 can be transmitted on different plasmid replicon types that rely on distinct classes of type IV secretion system for horizontal transfer.
Project description:Two isoforms of the heterodimeric enzyme penicillin G acylase (EC 3.5.1.11) from Providencia rettgeri ATCC 31052 (strain Bro1) were purified to near homogeneity. The isoforms exhibited comparable enzymatic activities but differed slightly in the molecular weight and pI of their respective alpha-subunit. The origin of this difference was traced to the partial conversion of the N-terminal Gln of the alpha-subunit to pyrrolidonecarboxylic acid (pyro-Glu). The boundaries of the mature enzyme within the translated DNA sequence of the wild-type propeptide (GenBank M86533) were determined. The results conclusively identified the length of the signal peptide and the position of the spacer cleaved from the propeptide to form the active heterodimer. The molecular weights of the alpha- and beta-subunits, based on these termini, were 23.7 and 62.2 kDa, respectively. Both isoforms were crystallized independently as hexagonal bipyramids up to 0.60 mm in diameter in either space group P6(1)22 or P6(5)22 (a = b = 140.5 A and c = 209.5 A) from ammonium sulfate solutions buffered by 50 mM potassium phosphate at pH 7.5. The presence of glycerol, although not required, facilitated crystal growth. Native and heavy atom derivative data were collected to 3.0 A resolution, and the calculation of isomorphous replacement phases is under way.