Project description:Ulcerative colitis (UC) is a chronic inflammatory disease of the colon, associated with gut microbiota dysbiosis. While global studies have explored this link, region-specific microbial profiles remain underreported. This pilot study aimed to characterize and compare, for the first time, the gut microbiota of Lebanese UC patients and healthy controls using 16S rRNA gene sequencing (V3–V4 region). Fecal samples from 11 UC patients and 11 healthy individuals were analyzed. Alpha and beta diversity metrics were computed, and gut microbial composition was assessed across taxonomic levels. Statistical comparisons used Mann-Whitney and Fisher’s exact tests. UC patients showed significantly reduced microbial diversity based on Faith’s Phylogenetic Diversity and Shannon index (p < 0.05), though evenness was unaffected. Beta diversity also revealed significant group-level dissimilarities (p < 0.05). At the phylum level, Bacteroidota was elevated in UC, while Bacillota and Actinomycetota were reduced. Genera such as Ruminococcus, Fusicatenibacter, Mediterraneibacter, Eubacterium, and Coprococcus were depleted in UC. Faecalibacterium, commonly reduced in UC, showed no significant difference. This first analysis of gut microbiota in Lebanese UC patients reveals a distinct microbial signature that partially diverges from global trends, supporting the need for region-specific microbiome studies and personalized microbiota-targeted therapies.
Project description:Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies focused on how fire affects both the taxonomic and functional diversity of soil microbial communities, along with plant diversity and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects for a grassland ecosystem 9-months after an experimental fire at the Jasper Ridge Global Change Experiment (JRGCE) site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis indicating that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa were able to withstand the disturbance. In addition, fire decreased the relative abundances of most genes associated with C degradation and N cycling, implicating a slow-down of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated plant growth, likely enhancing plant-microbe competition for soil inorganic N. To synthesize our findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for the significantly higher soil respiration rates in burned sites. In conclusion, fire is well-documented to considerable alter the taxonomic and functional composition of soil microorganisms, along with the ecosystem functioning, thus arousing feedback of ecosystem responses to affect global climate.
2022-02-19 | GSE126737 | GEO
Project description:Taxonomic studies of microbial diversity on beach
| PRJNA839220 | ENA
Project description:Taxonomic studies of microbial diversity on beach
| PRJNA741065 | ENA
Project description:Taxonomic studies of microbial diversity on beach
| PRJNA1018095 | ENA
Project description:Bacterial diversity in volcanic ash of Dayishan
| PRJNA763737 | ENA
Project description:Bacterial diversity in volcanic ash of Xiaoyishan
| PRJNA763746 | ENA
Project description:Bacterial diversity in volcanic ash of Gushan
| PRJNA763751 | ENA
Project description:Bacterial diversity in volcanic ash of maanshan
| PRJNA763755 | ENA
Project description:Bacterial diversity in volcanic ash of Aershan