Project description:This study looked for signals produced in UV-B irradiated leaves, and possibly induced in shielded leaves, that modulate physiological responses in maize. Transcriptome and proteomics profiling tracked changes in exposed and shielded organs. Metabolic profiling was examined for signaling molecules. Exposure of just the top leaf substantially alters the transcriptome of both irradiated and shielded organs, with greater changes as an additional 1-2 leaves are irradiated. Transcriptome, proteome and metabolome changes are UV-B regulated in shielded organs. Early steps in signal transduction and possible signal molecules are identified utilizing a time course experiment. Keywords: UVB, maize, leaves, ears
2011-02-01 | GSE25038 | GEO
Project description:Transcriptome study of ethephon on maize internode elongation.
Project description:Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and cold response as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
Project description:We investigated root hair-specific transcriptome using RNA-seq in maize. ZmLRL5 was further identified as a key regulator of maize root hair elongation.
Project description:This study looked for signals produced in UV-B irradiated leaves, and possibly induced in shielded leaves, that modulate physiological responses in maize. Transcriptome and proteomics profiling tracked changes in exposed and shielded organs. Metabolic profiling was examined for signaling molecules. Exposure of just the top leaf substantially alters the transcriptome of both irradiated and shielded organs, with greater changes as an additional 1-2 leaves are irradiated. Transcriptome, proteome and metabolome changes are UV-B regulated in shielded organs. Early steps in signal transduction and possible signal molecules are identified utilizing a time course experiment. Keywords: UVB, maize, leaves, ears Compared irradiated leaves in a time course, irradiated leaves versus shielded leaves, and shielded ears on plants with irradiated leaves. Also compared different number of leaves being irradiated. Spike-in controls were included.
Project description:Purpose: The goal of this analysis is that to reveal the different expression pattern in chilling-tolerant and chilling susceptible lines under chilling stress.Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and metal ion transporters as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
Project description:The exxpression profilling of chilling responsive and growth regulated microRNAs of maize hybrid ADA313 was conducted. Maize seedling were subjected to chilling temperature then meristem, elongation and mature growth zones were sampled. 321 known maize microRNA expression level were determined and compared between meristem, elongation and mature zones. Determining and validating of chilling responsive microRNAs associated with leaf growth of hybrid maize (Zea mays L.) ADA313
Project description:Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize has not been reported. MiRNAs play important roles in abiotic stress responses and nutrient deprivation. We used the microarray systems to detect miRNAs responding to the chronic nitrate limiting conditions in maize leaves and roots.
Project description:Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. Proteomic studies of the differences in peanut leaves, maize leaves and maize roots between intercropping and monocropping systems indicated that peanut/maize intercropping not only improves Fe availability in the rhizosphere but also influences the levels of proteins related to carbon and nitrogen metabolism. Moreover, intercropping may enhance stress resistance in the peanut plant (Xiong et al. 2013b). Although the mechanism and molecular ecological significance of peanut/maize intercropping have been investigated, little is known about the genes and/or gene products in peanut and maize roots that mediate the benefits of intercropping. In the present study, we investigated the transcriptomes of maize roots grown in intercropping and monocropping systems by microarray analysis. The results enabled exploration differentially expressed genes in intercropped maize. Peanut (Arachis hypogaea L. cv. Luhua14) and maize (Zea mays L. cv. Nongda108) seeds were grown in calcareous sandy soil in a greenhouse. The soil was enhanced with basal fertilizers [composition (mg·kg−1 soil): N, 100 (Ca (NO3)2·4H2O); P, 150 (KH2PO4); K, 100 (KCl); Mg, 50 (MgSO4·7H2O); Cu, 5 (CuSO4·5H2O); and Zn, 5 (ZnSO4·7H2O)]. The experiment consisted of three cropping treatments: peanut monocropping, maize monocropping and intercropping of peanut and maize. After germination of peanut for 10 days, maize was sown. Maize samples were harvested after 63 days of growth of peanut plants based on the degree of Fe chlorosis in the leaves of monocropped peanut. The leaves of monocropped peanut plants exhibited symptoms of Fe-deficiency chlorosis at 63 days, while the leaves of peanut plants intercropped with maize maintained a green color.
Project description:Maize (Zea mays L.) is one of the major cereal crops worldwide. Increasing planting density is an effective way to improve crop yield. However, plants grown under high-density conditions compete for water, nutrients, and light, which often leads to changes in productivity. To date, few studies have determined the transcriptomic differences in maize leaves in response to different planting densities. This study examined the whole-genome expression patterns in the leaves of maize planted under high and low densities to identify density-regulated genes. Leaves at upper, ear, and lower stem nodes were collected at the grain-filling stage of the maize hybrid Xianyu335 grown under low-density planting and high-density planting. In total, 72, 733, and 1,739 differentially expressed genes (DEGs) were identified in the respective upper, ear, and lower leaves under HDP. Upregulated and downregulated DEGs in the upper and lower leaves were similar in number, whereas upregulated DEGs in the ear leaves were significantly higher in number than the downregulated DEGs. Functional analysis indicated that genes responding to HDP-related stresses were mediated by pathways involving four phytohormones responsible for metabolism and signaling, osmoprotectant biosynthesis, transcription factors, and fatty acid biosynthesis and protein kinases, which suggested that these pathways are affected by the adaptive responses mechanisms underlying the physiological and biochemical responses of the leaves of maize planted at high density.