Project description:This data set contains 1376 mass spectrometry reads from root, rhizosphere and leaf sample of Populus Trichocarpa, as well as associated controls. This metabolomics data set was collected as part of a larger campaign which complements the metabolomics data with metagenome sequencing, transcriptomics, and soil measurement data.
Project description:A functional microarray targeting 24 genes involved in chlorinated solvent biodegradation pathways has been developed and used to monitor the gene diversity present in four trichloroethylene (TCE) contaminated sites under ERD (enhanced reductive dechlorination) treatment. The microarray format provided by NimbleGen and used in this study is 12x135K. 2 M-BM-5g of labelled gDNA from 30 groundwater samples were hybridized on the microarrays. A 30-chip study was performed, each chip corresponding to hybridization with 2 M-BM-5g of labelled gDNA retrieved from a monitoring well from one of the four contaminated sites. Each probe (760nt) on the microarray was synthesized in eight replicates, and a total of 5,707 random probes was used to determine the background noise. Groundwater samples were collected from four contaminated sites (B, F, G and H), four monitoring wells per site (P1, P2, P3 and P4). P1: well located upstream to the contamination source. P2: well in the contamination source. P3 and P4: wells located downstream to the contamination source. For site B, the monitoring of ERD demonstration was performed through a total of 5 sampling campaigns: C1 (T=0), C2 (T=104 days), C3 (T=231 days), C4 (T=291 days) and C5 (T=378 days). For the three other sites (F, G and H), only one sampling campaign was performed after the treatment.
Project description:Primary human macrophages in in vitro conditions have been exposed to hypergravity and microgravity during the 28th DLR parabolic flight campaign
Project description:The goal of this project was to screen soil samples for bacteria that may harbor B. anthracis virulence-associated genes (VAGs). There is currently no information about the prevalence of these types of organisms in the environment. Due to increased environmental monitoring of select agents by programs such as BioWatch and biodetection systems in place at the United States Post Offices and Department of State locations, it has become critical that we not only better understand the natural range of B. anthracis but also how widespread B. anthracis virulence genes are in environmental communities. Naturally occurring isolates containing the B. anthracis virulence genes could generate false-positive results in tests that detect the anthrax toxins, capsule or their associated genes. Understanding the true diversity and pathogenic potential of Bacillus spp. and particularly the B. cereus group is crucial not only in terms of understanding data from environmental monitoring but also diagnosing patients with clinical presentations similar to anthrax in the future. Severe and fatal disease caused by strains similar to B. anthracis could unnecessarily initiate emergency responses if anthrax was incorrectly suspected. Conversely, these strains may be used as bioterror agents requiring science-based responses; presently our limited understanding of these organisms does not permit data-driven decision making. We have investigated 700 aerobic sporoform soil isolates obtained from two areas in the Southwest of the US. Soil samples from the first site had been taken from public access land approximately 50 meters across from the work site of a fatal pneumonia case in a welding factory. This took place in year 2003 when B. cereus was isolated from a metal worker. The second site was targeted because of a recent case involving a deceased mule suspected to have died of a B. anthracis infection. Soil samples were initially analyzed at the CDC. Isolates were obtained by heating the soil at 65 degrees Celcius for 30 minutes followed by plating on agar media. All isolates were screened by PCR for the presence of B. anthracis genomic traits such as toxin genes (cya, lef and pag) as well as chromosomal markers. All isolates were also tested for their hemolytic activity as well as phage sensitivity.
Project description:Conditions of low organic matter content per gram of soil in the hyperarid core of the Atacama Desert, extreme temperatures and high UV radiation, makes it one of the best terrestrial analogue of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have remotely and automatically operated the SOLID-LDChip, an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA’s ASTEP ARADS Mars drilling simulating campaign. SOLID was loaded with a robotic arm with samples collected down to 80 cm depth and, after sample analysis with LDChip, sent results to a remote science team, to be validated by “omics” techniques.
Project description:Polycyclic aromatic hydrocarbons are common pollutants in soil, have negative effects on soil ecosystems, and are potentially carcinogenic. The Springtail (Collembola) Folsomia candida is often used as an indicator species for soil toxicity. Here we report a toxicogenomic study that translates the ecological effects of the polycyclic aromatic hydrocarbon phenanthrene in soil to the early transcriptomic responses in Folsomia candida. Microarrays were used to examine two different exposure concentrations of phenanthrene, namely the EC10 (24.95 mg kg-1 soil) and EC50 (45.80 mg kg-1 soil) on reproduction of this springtail, which evoked 405 and 251 differentially expressed transcripts, respectively. Fifty transcripts were differential in response to either concentration. Many transcripts encoding xenobiotic detoxification and biotransformation enzymes (phases I, II, and III) were upregulated in response to either concentration. Furthermore, indications of general and oxidative stress were found in response to phenanthrene. Chitin metabolism appeared to be disrupted particularly at the low concentration, and protein translation appeared suppressed at the high concentration of phenanthrene; most likely in order to reallocate energy budgets for the detoxification process. Finally, an immune response was evoked especially in response to the high effect concentration, which was also described in a previous transcriptomic study using the same effect concentration (EC50) of cadmium. Our study provides new insights in the molecular mode of action of the important polluting class of polycyclic aromatic hydrocarbons in soil animals. Furthermore, we present a fast, sensitive, and specific soil toxicity test which enhances traditional tests and may help to improve current environmental risk assessments and monitoring of potentially polluted sites.
Project description:Custom made functional gene micoarray (E-FGA) consisting of 13,056 mRNA-enriched anonymus microbial clones from dirverse microbial communities to profile microbial gene transcript in agricultural soils with low and high flux of N2O. A total of 96 genes displayed expression that differed significantly between low and high N2O emitting soils. Creation and validation of an cDNA microarray from environmental microbial mRNA, to use as a monitoring tool for microbial gene expression Microbial expression profiles comparing two high N2O-emitting sites (3 soil replicates and microarrays each) and two low N2O-emitting sites (3 soil replicates and microarray each) from sugarcane site in Mackay, Australia