Project description:Degradation of mRNA containing N6-methyladenosine (m6A) is essential for cell growth, differentiation, and stress responses. Here, we show that m6A markedly alters ribosome dynamics and that these alterations mediate the degradation effect of m6A on mRNA. We find that m6A is a potent inducer of ribosome stalling, and these stalls lead to ribosome collisions that form a unique conformation unlike those seen in other contexts. We find that the degree of ribosome stalling correlates with m6A-mediated mRNA degradation, and increasing the persistence of collided ribosomes correlates with enhanced m6A-mediated mRNA degradation. Ribosome stalling and collision at m6A is followed by recruitment of YTHDF m6A reader proteins to promote mRNA degradation. We show that mechanisms that reduce ribosome stalling and collisions, such as translation suppression during stress, stabilize m6A-mRNAs and increase their abundance, enabling stress responses. Overall, our study reveals the ribosome as the initial m6A sensor for beginning m6A-mRNA degradation.
Project description:The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the ER exit sites under the stress of amino-acid starvation. Here we provide the comparison of the gene expression profiles of S2 cells grown in full medium (Schneider's) and S2 cells upon of amino-acid starvation in KRB
Project description:Samples-WT Basal condition primary cortex cells; WT B27 Starved-Primary cortex cells starved overnight without B27 supplement media. WT AA Starved-Primary cortex cell starved without amino acid for 2 hours. WT AA Refed-Primary cortex cell refed for 1 hour after amino acid starvation. KO Basal-SLC38 Knockout Primary cortex cells starved overnight without B27 supplement media. KO B27 Starved-SLC38 Knockout Primary cortex cell starved without amino acid for 2 hours. KO AA starved-SLC38 Knockout Primary cortex cell refed for 1 hour after amino acid starvation. KO AA Refed-SLC38 Knockout Primary cortex cell refed for 1 hour after amino acid starvation.
Project description:The adaptation of tumor cells to metabolic stress is crucial for tumor development. We demonstrate that the translation of NRF2, a master regulator of antioxidant response, is controlled by the OGDH-METTL3 axis in melanoma for glucose starvation adaptation. To elucidate the regulatory mechanism of the OGDH-METTL3 axis during glucose starvation, we conducted co-immunoprecipitation and mass spectrometry analysis to identify the binding partner of OGDH that governs both the OGDH-METTL3 axis and tumor cell adaptation to glucose deprivation.
Project description:Circadian clocks are evolved to adapt to the daily environment changes under different conditions. The ability to maintain circadian clock functions in response to various stress and perturbations is important for organismal fitness. Here, we show that the nutrient sensing GCN2 signaling pathway is required for robust circadian clock function under amino acid starvation in Neurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock gene frq by suppressing WC complex binding at the frq promoter due to its reduced histone H3 acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream transcription factor CPC-1 establish a proper chromatin state at the frq promoter by recruiting the histone acetyltransferase GCN-5. The arrhythmic phenotype of the GCN2 kinase mutants under amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome-wide transcriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression of metabolic genes under amino acid starvation. Together, these results uncover an essential role of GCN2 signaling pathway in maintaining robust circadian clock function in response to amino acid starvation and the importance of histone acetylation at the frq locus in rhythmic gene expression.