ABSTRACT: Global diversity analysis of plant-associated Pseudopithomyces fungi reveals a single species producing the toxin associated with facial eczema in livestock: Pseudopithomyces toxicarius sp. nov.
Project description:Mycotoxins are secondary metabolites which are produced by numerous fungi and pose a continuous challenge to the safety and quality of food commodities in South Africa. These toxins have toxicologically relevant effects on humans and animals that eat contaminated foods. In this study, a diagnostic DNA microarray was developed for the identification of the most common food-borne fungi, as well as the genes leading to toxin production. A total of 40 potentially mycotoxigenic fungi isolated from different food commodities, as well as the genes that are involved in the mycotoxin synthetic pathways, were analyzed. For fungal identification, oligonucleotide probes were designed by exploiting the sequence variations of the elongation factor 1-alpha (EF-1 alpha) coding regions and the internal transcribed spacer (ITS) regions of the rRNA gene cassette. For the detection of fungi able to produce mycotoxins, oligonucleotide probes directed towards genes leading to toxin production from different fungal strains were identified in data available in the public domain. The probes selected for fungal identification and the probes specific for toxin producing genes were spotted onto microarray slides. The diagnostic microarray developed can be used to identify single pure strains or cultures of potentially mycotoxigenic fungi as well as genes leading to toxin production in both laboratory samples and maize-derived foods offering an interesting potential for microbiological laboratories. Keywords: Development of a diagnostic microarray for the identification of potentially mycotoxigenic fungi as well as genes leading to toxin production, 40 food-borne fungi, mycotoxins
Project description:Endophytic fungi are root-inhabiting fungi that can promote plant growth in a variety of ways. They can directly stimulate plant growth by producing phytohormones, such as auxin and gibberellins. They can also indirectly promote plant growth by helping plants to acquire nutrients, such as nitrogen and phosphorus, and by protecting plants from pests and pathogens.In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, nutrient acquisition, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
Project description:Mycotoxins are secondary metabolites which are produced by numerous fungi and pose a continuous challenge to the safety and quality of food commodities in South Africa. These toxins have toxicologically relevant effects on humans and animals that eat contaminated foods. In this study, a diagnostic DNA microarray was developed for the identification of the most common food-borne fungi, as well as the genes leading to toxin production. A total of 40 potentially mycotoxigenic fungi isolated from different food commodities, as well as the genes that are involved in the mycotoxin synthetic pathways, were analyzed. For fungal identification, oligonucleotide probes were designed by exploiting the sequence variations of the elongation factor 1-alpha (EF-1 α) coding regions and the internal transcribed spacer (ITS) regions of the rRNA gene cassette. For the detection of fungi able to produce mycotoxins, oligonucleotides directed towards genes leading to toxin production from different fungal strains were identified in data available in the public domain. The oligonucleotides selected for fungal identification and the oligonucleotides specific for toxin producing genes were spotted onto microarray slides. The diagnostic microarray developed can be used to identify potentially mycotoxigenic fungi as well as genes leading to toxin production in both laboratory and food samples offering an interesting potential for microbiological laboratories. Keywords: Development of a diagnostic microarray for the identification of potentially mycotoxigenic fungi as well as genes leading to toxin production, 40 food-borne fungi, mycotoxins Development of a diagnostic array for the identification of food-borne fungi and their potential mycotoxin-producing genes. Oligonucleotide probes to be printed onto the array were designed by exploiting the sequence variations of the elongation factor 1-alpha (EF-1 α) coding regions and the internal transcribed spacer (ITS) regions of the rRNA gene cassette. For the detection of fungi able to produce mycotoxins, oligonucleotides directed towards genes leading to toxin production from different fungal strains were identified in data available in the public domain. Analysis was performed with 40 fungal cultures were obtained from the Agricultural Research Council culture collection (ARC), Pretoria, South Africa.an in-house spotted oligonucleotide microarray. The identity of each fungus was confirmed by standard laboratory procedures. For DNA isolation, the fungal strains were grown on 1.5% malt extract agar at 25°C for 1-2 weeks and total genomic fungal DNA was extracted following the DNA extraction protocol described by Raeder and Broda (1985). The internal transcribed spacer oligonucleotides ITS1, ITS3 and ITS4 were used as a reference for normalization of all spot intensity data.Samples were fluorescently labelled with Cy5 dye by using a Cyâ¢Dye Post-labelling Reactive Dye Pack and wre hybridized to the oligonucleotide microarray overnight. Two biological and one technical replicate (using independent labelling reactions) was performed, each replication consisting of a reverse labelling experiment.
Project description:Fusarium verticillioides is one of the most important pathogens of maize, causing rots and producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes underperformance and even fatal toxicity in livestock and is associated with neural tube birth defects, growth stunting in children and some cancers. StuA, an APSES class transcription factor, is commonly a major developmental transcriptional regulator in fungi. It has been shown to regulate crucial developmental processes, such as sporulation, virulence and mycotoxin synthesis among others. In this study, the role of FvSTUA in F. verticillioides was examined by characterizing ∆FvstuA deletion mutants functionally and transcriptomally. The deletion mutants exhibited slower vegetative growth, stunted aerial hyphae and significant reductions in microconidiation. Macroconidiation and hydrophobicity of the deletion strains were reduced as well. Additionally, fumonisin production by and virulence of the deletion mutants were greatly reduced. Transcriptomic analysis revealed downregulation of expression of several genes in the fumonisin and fusarin C biosynthetic clusters and differential expression of genes involved in conidiation and virulence. Nuclear localization of FvSTUA-tdTomato supported the likely function of FvSTUA as a transcription factor. Together, our results indicate that FvSTUA plays a global role in transcriptional regulation in F. verticillioides influencing morphogenesis, toxin production and virulence.
Project description:Drosophila melanogaster larvae and filamentous fungi both utilise organic material. Here they compete for resources. Filamentous fungi can defend themselves and their substrate from predation respectively competition by the production and excretion of secondary metabolites, including substances with antibiotic and insecticidal properties. To analyse the traits that enables D. melanogaster larvae to reduce the harmful effects of fungal secondary metabolites and to develop on fungal infested substrate we confronted larvae with a toxin-producing wild type of Aspergillus nidulans, with a toxin-production-impaired mutant strain of A. nidulans, and with sterigmatocystin, a highly toxic metabolite of A. nidulans. Early first instar larvae were transferred to breeding substrate inhabited by fungal colonies respectively inoculated with the purified mycotoxin or controls. After 3, 6, 12, and 24 hours of confrontation larvae were collected and samples prepared for whole transcriptome shotgun sequencing.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. They can also develop arbuscular mycorrhizae (AM) while associated with Glomeromycota fungi. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program in AM and to identify new key plant genes involved in endosymbioses.
Project description:Using TMT-labeled quantitative protein technique, we quantitatively analyzed the proteomes of three different resistant Bambusa pervariabilis × Dendrocalamopisis grandis under four different treatments: pathogenic fungi, pathogenic toxin, pathogenic fungi plus toxin and sterile water, and screened out the differential proteins in different groups.