Project description:Biological soil crusts (BSCs) are cyanobacteria-dominated microbial communities that cover extensive portions of the world’s arid and semi-arid deserts. The infrequent periods of hydration are often too short to allow for dormancy strategies based on sporulation; consequently, survival is based on the unique capabilities of vegetative cells to resuscitate from and re-enter a stress resistant dormant state, one of which is migration within the crust layers in response to hydration. In this study, we sought to characterize the events that govern the emergence of the dominant cyanobacterium from dormancy, its subsequent growth, and the events triggered by re-desiccation and a transition back to dormant state. We performed a 48 hour laboratory wetting experiment of a desert BSC and tracked the response of Microcoleus vaginatus using a whole genome transcriptional time-course including night/day periods. This allowed the identification of genes with a diel expression pattern, genes involved uniquely in the signaling after hydration and those that contribute primarily to desiccation preparation.
Project description:In order to understand how Phormidium mats establish, and the role of associated taxa in their development, we collected biofilms over a 19-day growth period during a nitrate-induced bloom event in the Wai-iti River for proteogenomics analysis. At the onset of a late summer bloom, cobbles from the Wai-iti River (Nelson, New Zealand) were removed, cleared of incipient growth with sterile sponges, and placed back into the river. Clearing was gentle as seeding from the pre-existing rock surface is important for bloom establishment [24]. Five pre-cleared cobbles were collected at each of 3 time points to capture the first 3, 6 and 9 days of growth (Table S1). Additional cobbles that contemporaneously developed biofilms were collected at days 12 and 19.
Project description:Metaproteomics data for a protein-stable isotope fingerprinting (P-SIF) study of phototrophic, sulfur-cycling benthic microbial mats in Middle Island Sinkhole, Lake Huron, USA
Project description:Samples from benthic phototrophic microbial mats of Middle Island Sinkhole, Lake Huron, MI, USA. Peptides labeled in vitro for quantitative analysis by diDO-IPTL (Waldbauer et al. 2017 Anal. Chem.).
Project description:Effects of bottom trawling and environmental factors on benthic bacteria, meiofauna and macrofaunal communities and benthic ecosystem processes