Project description:The binding peaks of Spi-B in tuft cells were predominantly located in intergenic regions and introns, mirroring the distribution of PU.1 binding peaks in the genome.
Project description:HIF2A(EPAS1) geenome_wide localization by Cut & Tag in MRC5 human fibroblasts ectopically expressing HIF2A in the pBabe vector, and in control MRC5 human fibroblasts containing only the pBabe vector. 2 biological replicates were done for the MRC5-HIF2A cells. Cut & Tag with an anti-H3-K27me3 Ab was done as a positive control for the Cut & Tag experiments.
Project description:To investigate the transcriptional regulation of Xbp1s in ILC2s, sorted large intestinal ILC2s from mice were used for CUT&Tag sequencing to analyze the target of Xbp1s.
Project description:We developed scNanoSeq-CUT&Tag, a streamlined method by adapting a modified CUT&Tag protocol to Oxford Nanopore sequencing platform for efficient chromatin modification profiling at single-cell resolution. We firstly tested the performance of scNanoSeq-CUT&Tag on six human cell lines: K562, 293T, GM12878, HG002, H9, HFF1 and adult mouse blood cells, it showed that scNanoSeq-CUT&Tag can accurately distinguish different cell types in vitro and in vivo. Moreover, scNanoSeq-CUT&Tag enables to effectively map the allele-specific epigenomic modifications in the human genome andallows to analyze co-occupancy of histone modifications. Taking advantage of long-read sequencing,scNanoSeq-CUT&Tag can sensitively detect epigenomic state of repetitive elements. In addition, by applying scNanoSeq-CUT&Tag to testicular cells of adult mouse B6D2F1, we demonstrated that scNanoSeq-CUT&Tag maps dynamic epigenetic state changes during mouse spermatogenesis. Finally, we exploited the epigenetic changes of human leukemia cell line K562 during DNA demethylation, it showed that NanoSeq-CUT&Tag can capture H3K27ac signals changes along DNA demethylation. Overall, we prove that scNanoSeq-CUT&Tag is a valuable tool for efficiently probing chromatin state changes within individual cells.
Project description:We previously identified Dclk1, a tuft cell marker, marks tumor stem cells (TSCs) in mouse intestinal tumors. In this study, we have identified IL17RB as a cell surface marker distinctively expressed by Dclk1+ tuft-like tumor cells in mouse intestinal tumors. Using this tuft cell marker, we compared and analyzed the transcriptome of Lgr5-tuft marker-, Lgr5+tuft marker-, Lgr5-tuft marker+, and Lgr5+tuft marker+ tumor cells. These analyses revealed that tuft-like tumor cells in the intestinal tumors comprise two distinct subsets: highly differentiated tuft-like tumor cells (Lgr5-tuft marker+ cells) and tuft-like tumor cells with TCS potential (Lgr5+tuft marker+ cells).