Project description:The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, resistant to the frontline anti-tubercular drugs rifampicin and isoniazid, forces treatment with less effective and toxic second-line drugs and stands to derail TB control efforts. However, the immune response to MDR Mtb infection remains poorly understood. Here, we determined the RNA transcriptional profile of in vitro generated macrophages to infection with either drug susceptible Mtb HN878 or MDR Mtb W_7642 infection.
Project description:We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of (1) Beijing/W and non-Beijing/W clinical strains, and (2) susceptible and multidrug-resistant (MDR-) MTB strains.
Project description:We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of (1) Beijing/W and non-Beijing/W clinical strains, and (2) susceptible and multidrug-resistant (MDR-) MTB strains. THP-1 cells were induced differentiation into a macrophage phenotype. Then cells were infected with three MDR (INHR, RIFR) Beijing/W, three sensitive (INHS, RIFS) Beijing/W, three MDR(INHR, RIFR) non-Beijing/W, and three sensitive (INHS, RIFS) non-Beijing/W strains. Total RNA were extracted and transfered into cDNA for miRNA profile analysis. Non-infected cells were used as control.
Project description:Among the multidrug-resistant (MDR) clones of Mycobacterium tuberculosis (Mtb) that were epidemiologically particularly successful, the 100-32 MDR Beijing clone, also called B0/W148 clone, has emerged since the early sixties. These B0/W148 strains belonging to the lineage 2 within the global Mtb phylogeny, are the main contributors to the MDR epidemic in Russia and Eastern Europe, and since the USSR’s fall, have also propagated to Western Europe. Among the various mutations that were identified as being specific for the MDR B0/W148 clone, we focused on two found in the transcriptional regulators KdpDE and WhiB6 and characterized in a H37Rv strain background the transcriptional profile associated with these mutations and their potential impact on the in vitro and in vivo growth characteristics.
Project description:Among the multidrug-resistant (MDR) clones of Mycobacterium tuberculosis (Mtb) that were epidemiologically particularly successful, the 100-32 MDR Beijing clone, also called B0/W148 clone, has emerged since the early sixties. These B0/W148 strains belonging to the lineage 2 within the global Mtb phylogeny, are the main contributors to the MDR epidemic in Russia and Eastern Europe, and since the USSR’s fall, have also propagated to Western Europe. Among the various mutations that were identified as being specific for the MDR B0/W148 clone, we focused on two found in the transcriptional regulators KdpDE and WhiB6 and characterized in a H37Rv strain background the transcriptional profile associated with these mutations and their potential impact on the in vitro and in vivo growth characteristics.
2024-09-25 | GSE269917 | GEO
Project description:Whole genome sequencing of 202 MDR-MTB strains
Project description:Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), latently infects one quarter of the world’s population. The rise of multidrug resistant (MDR) Mtb infections worldwide presents a significant obstacle to curb TB globally. While human studies report dysregulated immune responses in MDR TB patients, there is a lack of clear understanding of the host-pathogen interactions following MDR Mtb infection. We recently showed that Mtb carrying a rifampicin drug resistance (RDR)-conferring single nucleotide polymorphism in the RNA polymerase-B gene (Mtb rpoB-H445Y) can modulate host macrophage metabolic reprogramming by production of Type I IFNs. Here, using a mouse model, we have characterized the host immune response in vivo following RDR Mtb infection. We show that despite establishment of Mtb infection in the lung and dissemination to the peripheral organs, lung myeloid and lymphoid immune responses to RDR Mtb is suppressed through a Type I IFN-dependent mechanism. These results coincide with a muted responses in the bone marrow hematopoietic stem and progenitor cells (HSPCs) and progenitors following RDR Mtb infection. These results suggest that host directed therapeutics and vaccines for drug resistant TB may need to be target specific host immune pathways for protection.