Project description:In this study, we used RNA-Seq to understand the mechanisms of Cd toxicity, cellular detoxification and protection pathways in response to Cd in rice roots. To gain additional insight into the rice transcriptomic response to environmental Cd stress, 15-day-old rice seedlings were treated with 10 or 100 μM solutions of Cd2+, or without Cd (control), for 24 h, at which point root samples were harvested and labeled as Cd+, Cd++, and control, respectively. These samples were used for 101 bp paired-end (PE) deep sequencing on an Illumina HiSeq 2500 platform.
Project description:By comparing transcriptional profiling between a wild-type rice and an Al-sensitive rice mutant star1, we found that rice possesses novel mechanisms of Al-tolerance in addition to ART1-regulated mechanism in rice. The transcriptional profiling between the wild-type rice and an Al-sensitive mutant, star1. +Al vs. -Al in the roots of wild-type rice and star1 mutant. Biological replicates: +Al/-Al WT root tip 4 replicates, +Al/-Al WT basal tip 4 replicates, +Al/-Al star1 root tip 4 replicates, +Al/-Al star1 basal tip 4 replicates
Project description:Rice MERISTEM ACTIVITYLESS1 (MAL1) is an RING-H2 finger domain (RFD) contained gene. To elucidate the molecular functions of MAL1 during crown root development, we generated MAL1 knock-down transgenic plants. MAL1 RNA interfering (RNAi) transgenic plants exhibited shorter crown root length and less crown root number phenotype accompanied by low cell division rate.Here we sought to find the downstream genes of OsMAL1 in rice crown root tip
Project description:Autotoxicity plays an important mechanism in regulating plant productivity. Ferulic acid (FA) is phytotoxic and was identified in extracts and residues of rice plants as a candidate for rice allelochemicals. To help characterize the autotoxicity mechanism of rice, we present the first large-scale, transcriptomic analysis of rice root responses to ferulic acid.
Project description:Despite the major physiological dissimilarities between roots and their tips, differences in their gene expression profiles remain largely unexplored. In this research, the transcriptome of rice (Oryza sativa L. subsp. Japonica) mature root tissue and root tips was monitored using mRNA-Seq at 2 time points. Almost 50 million 76 bp reads were mapped onto the rice genome sequence, differential expression patterns between tissues and time points were investigated and at least 1,006 novel transcriptionally active regions (nTARs) were detected to be expressed in rice root tissue. More than 30,000 genes were found to be expressed in rice roots, among which 1,761 root-specific and 306 tip-specific transcripts. Mature root tissue appears to respond more strongly to external stimuli than tips, showing a higher expression of for instance auxin responsive and ABA-responsive genes, as well as the phenylpropanoid pathway and photosynthesis upon light. The root tip-specific transcripts are mainly involved in mitochondrial electron transport, organelle development, secondary metabolism, DNA replication and metabolism, translation, and cellular component organization. As roots developed, genes involved in electron transport, response to oxidative stress, protein phosphorylation and metabolic processes were activated. For some nTARs a potential role in root development can be put forward based on homology to genes involved in CLAVATA signaling, cell cycle regulators and hormone signaling. A subset of differentially expressed genes and novel transcripts was confirmed using (q)RT-PCR. These results uncover previously unrecognized tissue-specific expression profiles and provide an interesting starting point to study the different regulation of transcribed regions of these tissues.
Project description:To gain a genome-scale understanding of the role that developmental processes play in regulating stimulus response, we examined the effect of -Fe stress on gene expression along the longitudinal axis of the root. Since roots grow from stem cells located near the tip, the position of cells along the longitudinal axis can be used as a proxy for developmental time, with distance from the root tip correlating with increased differentiation. To estimate the role developmental stage plays in regulating salt response, roots were dissected into four longitudinal zones (LZ data set) after transfer to standard or -Fe media and transcriptionally profiled. Little is known about how developmental cues affect the way cells interpret their environment. Here we characterize the transcriptional response of different cell layers and developmental stages of the Arabidopsis root to high salinity and find that transcriptional responses are highly constrained by developmental parameters. These transcriptional changes lead to the differential regulation of specific biological functions in subsets of cell-layers, several of which correspond to observable physiological changes. We show that known stress pathways primarily control semi-ubiquitous responses and use mutants that disrupt epidermal patterning to reveal cell-layer specific and inter-cell-layer effects. By performing a similar analysis using iron-deprivation we identify common cell-type specific stress responses and environment-independent biological functions that define each cell type. Experiment Overall Design: Roots were grown under standard conditions for 5 days then transfered to standard media or iron deficient (-Fe) conditions (0.3mM Ferrozine in MS media containing no ferrous sulfate). 24 hours after transferring seedlings, roots were cut into 4 regions using a razor blade. The first cut was made ~150 µm from the root tip at the point where the shape of the root transitions from conical to cylindrical (Zone 1). The second cut was made ~200 µm above the first cut, at the point were the root becomes less optically dense, which marks the approximate end of the meristematic zone (Zone 2). The third cut was made ~200-300 µm above the second cut, just below the region where root hairs begin to emerge (Zone 3). The fourth cut was made ~1 mm above the third cut (Zone 4).
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:The Oryza longistaminata is a perennial wild rice species with AA genome, which characterized by the presence of rhizomatous stem. The rhizomatousness trait in rice was previously identified quantitatively controlled by many genes, but the molecular mechanism related to the rhizome initiation and elongation is still unknown. In this study, the specific gene expression patterns across five tissues in O. longistaminata, especially in the rhizome were characterized by using the Affymetrix rice microarray platform, the rhizome-specific expressed genes and its corresponding regulatory were further analyzed. The different gene sets were determined exclusively expressed in five tissues; strikingly 58 genes with functions related to transcription regulation and cell proliferation were identified as prevalent sets in rhizome tip, of them, several genes were functionally involved in tiller initiation and elongation. And a set of genes were differentially regulated in the rhizome tip relative to shoot tip, the predominant repressed genes are involved in photosynthesis, while genes related to phytohormone and the gene families with redundancy function were obviously differentially regulated. Several cis-regulatory elements, including CGACG, GCCCORE, GAGAC and a Myb Core, were highly enriched in rhizome tip or internode, and two cis-elements such as RY repeat and TAAAG, which implicated in the ABA signaling pathway, were found overrepresented in the rhizome tip in comparison with shoot tip. A few rhizome-specific expressed genes were co-localized on the rhizome-related QTLs regions, indicating these genes may be good functional candidates for the rhizome related gene cloning. The whole genome profiling of oryza longistaminata indicated that a very complex gene regulatory network underlies rhizome development and growth, and there might be an overlapping regulatory mechanism in the establishment of rhizome and tiller. Phytohormone such as IAA and GA are involved in the signaling pathway in determining rhizome. Several cis-elements enriched in rhizome and the identified rhizome-specific genes co-localized on the rhizome-related QTL intervals provide a base for further dissection of the molecular mechanism of rhizomatousness
Project description:In this study, the metabolic adjustments performed by maize (Zea mays L) seminal roots exposed to 25 µM Cd2+ or 25 µM Cu2+ at pre-emergence are compared, focusing on the proteomic changes after metal exposure. Root width was increased, and root length was decreased after 72 h of metal treatment. Both metals induced H2O2 accumulation and lipid peroxidation in the root tip. These changes were accompanied by increases in lipoxygenase activity and 4-hydroxy-2-nonenal content. NMR spectroscopy revealed that the abundance of 38 water-soluble metabolites was significantly modified by Cd and Cu exposure; this set of metabolites comprised carboxylic acids, amino acids, carbohydrates, and unidentified phenolic compounds. Linoleic acid content significantly decreased in Cu-treated samples. The total amount of proteins detected in maize root apexes was 2,171. Gene ontology enrichment analysis of the differentially accumulated proteins was performed to detect pathways probably affected by metal additions. Both metals altered redox homeostasis, up-regulated oxylipins biosynthetic process, and shifted metabolism towards the oxidative pentose-phosphate in the root apexes. However, the methionine salvage pathway appears as a key metabolic module only under Cd stress. The integrative analysis carried out in this study suggests that most molecular features behind the reprogramming of maize root tips to cope with cadmium and copper toxicity are common, but some are not.
Project description:Despite the major physiological dissimilarities between roots and their tips, differences in their gene expression profiles remain largely unexplored. In this research, the transcriptome of rice (Oryza sativa L. subsp. Japonica) mature root tissue and root tips was monitored using mRNA-Seq at 2 time points. Almost 50 million 76 bp reads were mapped onto the rice genome sequence, differential expression patterns between tissues and time points were investigated and at least 1,006 novel transcriptionally active regions (nTARs) were detected to be expressed in rice root tissue. More than 30,000 genes were found to be expressed in rice roots, among which 1,761 root-specific and 306 tip-specific transcripts. Mature root tissue appears to respond more strongly to external stimuli than tips, showing a higher expression of for instance auxin responsive and ABA-responsive genes, as well as the phenylpropanoid pathway and photosynthesis upon light. The root tip-specific transcripts are mainly involved in mitochondrial electron transport, organelle development, secondary metabolism, DNA replication and metabolism, translation, and cellular component organization. As roots developed, genes involved in electron transport, response to oxidative stress, protein phosphorylation and metabolic processes were activated. For some nTARs a potential role in root development can be put forward based on homology to genes involved in CLAVATA signaling, cell cycle regulators and hormone signaling. A subset of differentially expressed genes and novel transcripts was confirmed using (q)RT-PCR. These results uncover previously unrecognized tissue-specific expression profiles and provide an interesting starting point to study the different regulation of transcribed regions of these tissues. 2 biological replicates of roots and 3 biological replicates of root tips were sampled at two time points (1 biological replicate contains pooled tissue from 6 plants)