Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Triple-negative breast cancer (TNBC) represents the deadliest form of gynecological tumors currently lacking targeted therapies. The ethanol extract of the North Pacific brittle star Ophiura sarsii presented promising anti-TNBC activities. After elimination of the inert material, the active extract was submitted to a bioguided isolation approach using high-resolution semipreparative HPLC-UV, resulting in one-step isolation of an unusual porphyrin derivative possessing strong cytotoxic activity. HRMS and 2D NMR resulted in the structure elucidation of the compound as (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid. Never identified before in Ophiuroidea, porphyrins have found broad applications as photosensitizers in the anticancer photodynamic therapy. The simple isolation of a cytotoxic porphyrin from an abundant brittle star species we describe here may pave the way for novel natural-based developments of targeted anti-cancer therapies.